首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   18篇
  国内免费   7篇
化学   212篇
晶体学   1篇
力学   7篇
综合类   1篇
数学   64篇
物理学   66篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   10篇
  2020年   13篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   20篇
  2014年   14篇
  2013年   15篇
  2012年   21篇
  2011年   26篇
  2010年   24篇
  2009年   16篇
  2008年   13篇
  2007年   9篇
  2006年   19篇
  2005年   12篇
  2004年   9篇
  2003年   4篇
  2002年   7篇
  2001年   4篇
  2000年   11篇
  1999年   5篇
  1998年   4篇
  1997年   7篇
  1996年   2篇
  1995年   13篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1962年   2篇
排序方式: 共有351条查询结果,搜索用时 11 毫秒
1.
The surface basicity of Ti-La-Li multicoinponent oxides has been investigated by means of CO2-TPD. The experiment results show that C2 (C2H6 C2H4) selectivity is related to surface basic strength. The surface active oxygen species have also been characterized by means of XPS, O2-TPD and so on. It has been indicated that C2 selectivity and CH4 conversion are correlated with lattice oxygen and the adsorbed oxygen on the surface of the catalyst respectively In the O2-TPD experiments, it has also been found that there are three kinds of oxygen species on the surface of the series catalvsts, which are a (100℃ 750℃) Among them α-oxvgen causes deep oxidation whileβand γ oxygen species are related to oxidalive coupling of methane (OCM).  相似文献   
2.
Microgels are extremely interfacially active and are widely used to stabilize emulsions. However, they are commonly used to stabilize oil-in-water emulsions due to their intrinsic hydrophilicity and initially dispersed in water. In addition, there have been no attempts to control microgel structural layers that are formed at the interface and as a result it limits applications of microgel in advanced materials. Here, we show that by introducing octanol into poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAM-co-MAA) microgels, octanol-swollen microgels can rapidly diffuse from the initially dispersed oil phase onto the water droplet surface. This facilitates the formation of microgel-laden interfacial layers with strong elastic responses and also generates stable inverse water-in-oil Pickering emulsions. These emulsions can be used as templates to produce microgel colloidosomes, herein termed ‘microgelsomes’, with shells that can be fine-tuned from a particle monolayer to a well-defined bilayer. The microgelsomes can then be used to encapsulate and/or anchor nanoparticles, proteins, vitamin C, bio-based nanocrystals or enzymes. Moreover, the programmed release of these substances can be achieved by using ethanol as a trigger to mediate shell permeability. Thus, these reconfigurable microgelsomes with a microgel-bilayer shell can respond to external stimuli and demonstrate tailored properties, which offers novel insights into microgels and promise wider application of Pickering emulsions stabilized by soft colloids.

Inverse W/O Pickering emulsions and reconfigurable microgelsomes with a well-defined bilayer structure are prepared from octanol-swollen PNIPAM-co-MAA microgels and the combination of binary microgels, which promise wider application of soft colloids.  相似文献   
3.
In this study, GaAs metal–oxide–semiconductor (MOS) capacitors using Y‐incorporated TaON as gate dielectric have been investigated. Experimental results show that the sample with a Y/(Y + Ta) atomic ratio of 27.6% exhibits the best device characteristics: high k value (22.9), low interfacestate density (9.0 × 1011 cm–2 eV–1), small flatband voltage (1.05 V), small frequency dispersion and low gate leakage current (1.3 × 10–5A/cm2 at Vfb + 1 V). These merits should be attributed to the complementary properties of Y2O3 and Ta2O5:Y can effectively passivate the large amount of oxygen vacancies in Ta2O5, while the positively‐charged oxygen vacancies in Ta2O5 are capable of neutralizing the effects of the negative oxide charges in Y2O3. This work demonstrates that an appropriate doping of Y content in TaON gate dielectric can effectively improve the electrical performance for GaAs MOS devices.

Capacitance–voltage characteristic of the GaAs MOS capacitor with TaYON gate dielectric (Y content = 27.6%) proposed in this work with the cross sectional structure and dielectric surface morphology as insets.  相似文献   

4.
Spontaneous melting of a perfect crystalline graphene model in 2D space is studied via molecular dynamics simulation. Model containing 104 atoms interacted via long-range bond-order potential (LCBOP) is heated up from 50 to 8,450 K in order to see evolution of various thermodynamic quantities, structural characteristics and occurrence of various structural defects. We find that spontaneous melting of our graphene model in 2D space exhibits a first-order behaviour of the transition from solid 2D graphene sheet into a ring-like structure 2D liquid. Occurrence and clustering of Stone–Wales defects are the first step of melting process followed by breaking of C–C bonds, occurrence/growth of various types of vacancies and multi-membered rings. Unlike that found for melting of a 2D crystal with an isotropic bonding, these defects do not occur homogeneously throughout the system, they have a tendency to aggregate into a region and liquid phase initiates/grows from this region via tearing-like or crack-propagation-like mechanism. Spontaneous melting point of our graphene model occurs at Tm = 7,750 K. The validity of classical nucleation theory and Berezinsky–Kosterlitz–Thouless–Nelson–Halperin–Young (BKTNHY) one for the spontaneous melting of our graphene model in strictly 2D space is discussed.  相似文献   
5.
6.
Carbon emission abatement is a hot topic in environmental sustainability and cap-and-trade regulation is regarded as an effective way to reduce the carbon emission. According to the real industrial practices, sustainable product implies that its production processes facilitate to reduce the carbon emission and has a positive response in market demand. In this paper, we study the sustainability investment on sustainable product with emission regulation consideration for decentralized and centralized supply chains. We first examine the order quantity of the retailer and sustainability investment of the manufacturer for the decentralized supply chain with one retailer and one manufacturer. After that, we extend our study to the centralized case where we determine the production quantity and sustainability investment for the whole supply chain. We derive the optimal order quantity (or production quantity) and sustainability investment, and find that the sustainability investment efficiency has a significant impact on the optimal solutions. Further, we conduct numerical studies and find surprisingly that the order quantity may be increasing in the wholesale price due to the effects of the sustainability and emission consideration. Moreover, we investigate the achievability of supply chain coordination by various contracts, and find that only revenue sharing contract can coordinate the supply chain whereas the buyback contract and two-part tariff contract cannot. Important insights and managerial implications are discussed.  相似文献   
7.
本文报道了锌、镉、汞、铅硒化物、碲化物半导体超微粒子的制备以及它们的光谱性质 ,比较了它们的粗、细粒子的吸收光谱和荧光光谱的差异 ,以及与硫化物超微粒子的相似性 ,同时讨论了上述物质的超微粒子在老化过程中的行为及其原因.  相似文献   
8.
The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases.

A MMDA platform is developed by using metal-tagged antibodies as reporting probes combined with machine learning algorithms, as a general strategy for highly multiplexed biofluid assay.  相似文献   
9.
The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol–glycerol–H2O at 25°C. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization of H2O. The glycerol molecules do not exert a hydrophobic effect on H2O. Rather, the hydroxyl groups of glycerol, perhaps by forming clusters via its alkyl backbone with hydroxyl groups pointing outward, interact with H2O so as to reduce the characteristics of liquid H2O. The global hydrogen bond probability and, hence, the percolation nature of the hydrogen bond network is reduced. In addition, the degree of fluctuation inherent in liquid H2O is reduced by glycerol perhaps by participating in the hydrogen bond network via OH groups. At infinite dilution, the pair interaction coefficients in enthalpy were evaluated and these data suggest a possibility that the interaction is mediated through H2O.  相似文献   
10.
Ultrasonic guided wave becomes one of promising tool for monitoring various types of structures such as large steel plates, vessels, and pipes in oil, chemical or nuclear industry, because guided waves have ability to travel wide range of the target structure in a single position. However, analysis of guided wave signals acquired from structure is difficult on account of low S/N ratio and its dispersive nature. To improve S/N ratio and overcome dispersion effect, focusing techniques for guided waves are needed. Thus, in this study, focusing techniques for guided waves were developed in order to improve long range inspection ability, and performance of the developed techniques was verified by experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号