全文获取类型
收费全文 | 228篇 |
免费 | 8篇 |
专业分类
化学 | 173篇 |
力学 | 2篇 |
数学 | 32篇 |
物理学 | 29篇 |
出版年
2024年 | 2篇 |
2023年 | 5篇 |
2022年 | 11篇 |
2021年 | 8篇 |
2020年 | 14篇 |
2019年 | 11篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 6篇 |
2015年 | 10篇 |
2014年 | 12篇 |
2013年 | 9篇 |
2012年 | 14篇 |
2011年 | 13篇 |
2010年 | 5篇 |
2009年 | 4篇 |
2008年 | 8篇 |
2007年 | 10篇 |
2006年 | 12篇 |
2005年 | 8篇 |
2004年 | 9篇 |
2003年 | 9篇 |
2002年 | 8篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1997年 | 1篇 |
1993年 | 1篇 |
1990年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1984年 | 5篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1981年 | 3篇 |
1979年 | 5篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有236条查询结果,搜索用时 15 毫秒
1.
We propose a modification of a NALM-based 2R regenerator of phase-encoded signals which operates at considerably lower input powers than was studied earlier. Our modification consists of replacing the core-matched and lossless fiber coupler in the NALM by a coupler with a propagation constant mismatch and loss asymmetrically distributed between the two cores. The performance of the modified regenerator and the one studied earlier is approximately the same. 相似文献
2.
Hot-stage microscopy was used to characterise crystal growth at the interface between sisal fibre bundles and a polylactic acid (PLA) matrix in order to better understand the mechanical properties of sisal fibre–PLA composites. Cooling rates and crystallisation temperatures and times were varied to influence crystalline morphology at the interface. Single sisal fibre bundles were evaluated in their as received state or treated with 6 wt.% caustic soda solution for 48?h at room temperature. A microbond shear test was used to characterise the shear strength of the interface as a function of fibre surface treatment. These tests were performed on sisal fibre bundles carefully embedded in flat films of PLA supported on card mounts. Fibre bundles in a PLA matrix were cooled from 180?°C at rates from 2 to 9?°C/min and then crystallised isothermally. For as received fibre bundles uneven growth of PLA spherulites occurred at all cooling rates and crystallisation temperatures. For caustic soda treated fibres, uneven spherulitic growth was observed at crystallisation temperatures at and above 125?°C. In contrast, transcrystalline growth was observed for samples cooled to 120?°C at cooling rates from 2 to 6?°C/min and then allowed to crystallise. The microbond shear strengths of untreated and caustic soda treated fibre bundles were evaluated using Weibull statistics and the caustic soda treated fibres exhibited higher interfacial shear strengths in comparison to untreated fibres, reflecting the development of a transcrystalline layer at the fibre to matrix interface. 相似文献
3.
Nicholas Douglas Charles J. Neef Robert A. Rogers Jake A. Stanley Jacob Armitage Ben Martin Todd W. Hudnall William J. Brittain 《Journal of Physical Organic Chemistry》2013,26(8):688-695
The synthesis and reactivity of a tetrahydrochromeno[2,3‐b]indoles are reported. Evidence for reversible ring‐opening is based on H/D exchange and trapping experiments. These compounds readily undergo reaction with tetra‐n‐butylammonium cyanide. The cyanide reaction is 10–100× faster when the solution is irradiated with 350 nm light. Reaction with trimethylsilyl cyanide occurs only with UV irradiation demonstrating photoreactivity. The rate of tetrahydrochromeno[2,3‐b]indole ring‐opening is greater for (i) Me substitution at the hemiaminal carbon (compared to Ph), and (ii) substitution of fluorine at the 9‐position of the indole. Under acidic conditions, the ring‐opened indolium ion is observed. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
4.
We report a structural characterization using X-ray absorption spectroscopy of the molybdenum site of Escherichia coli YedY, a novel oxidoreductase related to be the sulfite oxidase family of molybdenum enzymes. We find that the enzyme can exist in Mo(V) and Mo(IV) oxidation states but cannot be readily oxidized to the Mo(VI) form. Mo(V) YedY has molybdenum coordination similar to that of sulfite oxidase, with one Mo═O at 1.71 ?, three Mo-S at 2.39 ?, and one Mo-OH at 2.09 ?, which elongates to 2.20 ? upon reduction to Mo(IV), indicating Mo-OH(2) coordination. The Mo(V) enzyme also possesses a long Mo-O coordination at 2.64 ?, which may be due to oxygen coordination by Asn-45 O(δ), with Mo-O(δ) approximately trans to the Mo═O group. A comparison with sulfite oxidase indicates that YedY possesses a much more uniform Mo-S coordination, with a maximum permitted deviation of less than 0.05 ?. Our results indicate that the YedY active site shows considerable similarity to but also important differences from that of reduced forms of sulfite oxidase. 相似文献
5.
6.
C3′‐Deoxygenation of Paromamine Catalyzed by a Radical S‐Adenosylmethionine Enzyme: Characterization of the Enzyme AprD4 and Its Reductase Partner AprD3
下载免费PDF全文
![点击此处可从《Angewandte Chemie (International ed. in English)》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Hak Joong Kim Jake LeVieux Yu‐Cheng Yeh Prof. Dr. Hung‐wen Liu 《Angewandte Chemie (International ed. in English)》2016,55(11):3724-3728
C3′‐deoxygenation of aminoglycosides results in their decreased susceptibility to phosphorylation thereby increasing their efficacy as antibiotics. However, the biosynthetic mechanism of C3′‐deoxygenation is unknown. To address this issue, aprD4 and aprD3 genes from the apramycin gene cluster in Streptomyces tenebrarius were expressed in E. coli and the resulting gene products were characterized in vitro. AprD4 is shown to be a radical S‐adenosylmethionine (SAM) enzyme, catalyzing homolysis of SAM to 5′‐deoxyadenosine (5′‐dAdo) in the presence of paromamine. [4′‐2H]‐Paromamine was prepared and used to show that its C4′‐H is transferred to 5′‐dAdo by AprD4, during which the substrate is dehydrated to a product consistent with 4′‐oxolividamine. In contrast, paromamine is reduced to a deoxy product when incubated with AprD4/AprD3/NADPH. These results show that AprD4 is the first radical SAM diol‐dehydratase and, along with AprD3, is responsible for 3′‐deoxygenation in aminoglycoside biosynthesis. 相似文献
7.
Soper JD Kryatov SV Rybak-Akimova EV Nocera DG 《Journal of the American Chemical Society》2007,129(16):5069-5075
Hangman metalloporphyrin complexes poise an acid-base group over a redox-active metal center and in doing so allow the "pull" effect of the secondary coordination environment of the heme cofactor of hydroperoxidase enzymes to be modeled. Stopped-flow investigations have been performed to decipher the influence of a proton-donor group on O-O bond activation. Low-temperature reactions of tetramesitylporphyrin (TMP) and Hangman iron complexes containing acid (HPX-CO2H) and methyl ester (HPX-CO2Me) functional groups with peroxyacids generate high-valent Fe=O active sites. Reactions of peroxyacids with (TMP)FeIII(OH) and methyl ester Hangman (HPX-CO2Me)FeIII(OH) give both O-O heterolysis and homolysis products, Compound I (Cpd I) and Compound II (Cpd II), respectively. However, only the former is observed when the hanging group is the acid, (HPX-CO2H)FeIII(OH), because odd-electron homolytic O-O bond cleavage is inhibited. This proton-controlled, 2e- (heterolysis) vs 1e- (homolysis) redox specificity sheds light on the exceptional catalytic performance of the Hangman metalloporphyrin complexes and provides tangible benchmarks for using proton-coupled multielectron reactions to catalyze O-O bond-breaking and bond-making reactions. 相似文献
8.
9.
Ryan M. Tipker Jake A. Muldoon Daniel H. Pham Balazs R. Varga Russell P. Hughes David S. Glueck Gary J. Balaich Arnold L. Rheingold 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2022,134(1):e202110753
Tetrahedral main-group compounds are normally configurationally stable, but P-epimerization of the chiral phosphiranium cations syn- or anti-[Mes*P(Me)CH2CHPh][OTf] (Mes*=2,4,6-(t-Bu)3C6H2) occurred under mild conditions at 60 °C in CD2Cl2, resulting in isomerization to give a syn-enriched equilibrium mixture. Ion exchange with excess [NBu4][Δ-TRISPHAT] (Δ-TRISPHAT=Δ-P(o-C6Cl4O2)3) followed by chromatography on silica removed [NBu4][OTf] and gave mixtures of syn- and anti-[Mes*P(Me)CH2CHPh][Δ-TRISPHAT]?x[NBu4][Δ-TRISPHAT]. NMR spectroscopy showed that isomerization proceeded with epimerization at P and retention at C. DFT calculations are consistent with a mechanism involving P-C cleavage to yield a hyperconjugation-stabilized carbocation, pyramidal inversion promoted by σ-interaction of the P lone pair with the neighboring β-carbocation, and ring closure with inversion of configuration at P. 相似文献
10.
Marta Falcicchio Jake A. Ward Sara Y. Chothia Jaswir Basran Alisha Mohindra Salvador Macip Pietro Roversi Richard G. Doveston 《Chemical science》2021,12(39):12985
14-3-3 proteins are an important family of hub proteins that play important roles in many cellular processes via a large network of interactions with partner proteins. Many of these protein–protein interactions (PPI) are implicated in human diseases such as cancer and neurodegeneration. The stabilisation of selected 14-3-3 PPIs using drug-like ‘molecular glues’ is a novel therapeutic strategy with high potential. However, the examples reported to date have a number of drawbacks in terms of selectivity and potency. Here, we report that WR-1065, the active species of the approved drug amifostine, covalently modifies 14-3-3σ at an isoform-unique cysteine residue, Cys38. This modification leads to isoform-specific stabilisation of two 14-3-3σ PPIs in a manner that is cooperative with a well characterised molecular glue, fusicoccin A. Our findings reveal a novel stabilisation mechanism for 14-3-3σ, an isoform with particular involvement in cancer pathways. This mechanism can be exploited to harness the enhanced potency conveyed by covalent drug molecules and dual ligand cooperativity. This is demonstrated in two cancer cell lines whereby the cooperative behaviour of fusicoccin A and WR-1065 leads to enhanced efficacy for inducing cell death and attenuating cell growth.The aminothiol WR-1065 covalently modifies 14-3-3σ to stabilse its interactions with p53 and ERα. It enhances the effect of fusicoccin A via a cooperative mechanism that leads to 14-3-3 partner-protein specific activty against cancer cells. 相似文献