首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
化学   94篇
力学   3篇
数学   7篇
物理学   8篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   7篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2007年   6篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Bur SK  Padwa A 《Organic letters》2002,4(23):4135-4137
Through a novel sequence of aminodiene Diels-Alder reactions, amidofurans 18a-c were converted to tricyclic ketones 21a-c in moderate to good yields. Ketone 21a could be converted to Uhlé's ketone (6) by cleaving the tert-butyl carbamate and oxidatively removing the methyl ester. Tricycle 21a readily underwent bromination to give 22. Formation of the corresponding enol triflate 25 followed by carbonylation gave ester 27, which was then coupled with N-methyl propriolamide to furnish 26. [reaction: see text]  相似文献   
2.
Multicomponent Ni-base alloys exhibit good mechanical properties even at elevated temperatures and they are widely used for industrial production of exertion-resistive parts of engines. These properties are mainly determined by the coexistence of a disordered γ matrix with a face centred cubic lattice and cuboidal domains of its ordered γ′ structure. Therefore it is useful to study phase equilibria in Ni-base systems, namely in the regions involving both mentioned phases. One of the conclusions of our recent work on Ni–Al–Cr–W system was a necessity of modification of selected thermodynamic parameters of the ternary Ni–Al–W subsystem in order to achieve a better agreement of our experimental observations with theoretical modelling. This involves new measurements of the microstructure of selected samples of the Ni–Al–W system at 900°C and the comparison of the results with existing literature data in order to confirm our conclusions on higher order system investigated before. It is a first step on the way to an assessment of the Ni–Al–W system, which has not been done before.  相似文献   
3.
Using semiempirical and ab initio procedures, the most stable conformations of meso- and rac-bioxirane and of some substituted 1,2:3,4-diepoxides were calculated. For threo-diepoxides (having the same relative configurations as rac-bioxirane, 3 ), two stable conformations with CCCC dihedral angles of ca. 90 and ca. 270° were found. For erythro-diepoxides (derivatives of meso-bioxirane, 4 ) the calculations suggest three preferred conformations with corresponding dihedral CCCC angles of ca. 90°, ca. 180°, and ca. 270°. The calculations are in fair agreement with the experimental data available for the unsubstituted compounds 3 and 4 .  相似文献   
4.
Plasmepsin II (PMII), a malarial aspartic protease involved in the catabolism of hemoglobin in parasites of the genus Plasmodium, and renin, a human aspartic protease, share 35% sequence identity in their mature chains. Structures of 4‐arylpiperidine inhibitors complexed to human renin were reported by Roche recently. The major conformational changes, compared to a structure of renin, with a peptidomimetic inhibitor were identified and subsequently modeled in a structure of PMII (Fig. 1). This distorted structure of PMII served as active‐site model for a novel class of PMII inhibitors, according to a structure‐based de novo design approach (Fig. 2). These newly designed inhibitors feature a rigid 7‐azabicyclo[2.2.1]heptane scaffold, which, in its protonated form, is assumed to undergo ionic H‐bonding with the two catalytic Asp residues at the active site of PMII. Two substituents depart from the scaffold for occupancy of either the S1/S3 or S2′‐pocket and the hydrophobic flap pocket, newly created by the conformational changes in PMII. The inhibitors synthesized starting from N‐Boc‐protected 7‐azabicyclo[2.2.1]hept‐2‐ene ( 6 ; Schemes 15) displayed up to single‐digit micromolar activity (IC50 values) toward PMII and good selectivity towards renin. The clear structure? activity relationship (SAR; Table) provides strong validation of the proposed conformational changes in PMII and the occupancy of the resulting hydrophobic flap pocket by our new inhibitors.  相似文献   
5.
In this study, the solid-state reaction mechanism and kinetics were investigated for production of anhydrous sodium metaborate (NaBO2), an industrially and technologically important boron compound. To assess the kinetics of solid-state production of NaBO2, the chemical reaction between borax (Na2B4O7) and sodium hydroxide (NaOH) was investigated by use of the thermal analysis techniques thermogravimetry (TG) and differential thermal analysis (DTA). DTA curves obtained under non-isothermal conditions at different heating rates (5, 10 and 20 °C/min), revealed five endothermic peaks corresponding to five solid-state reactions occurring at 70, 130, 295, 463, and 595 °C. The stages of the solid-state reaction used for production NaBO2 were also analyzed by XRD, which showed that at 70 and 130 °C, Na2B4O7 and NaOH particles contacted between the grains, and diffusion was initiated at the interface. However, there was not yet any observable formation of NaBO2. Formation of NaBO2 was initiated and sustained from 295 to 463 °C, and then completed at 595 °C; the product was anhydrous NaBO2. Activation energies (E a) of the solid-state reactions were calculated from the weight loss based on the Arrhenius model; it was found that in the initial stages of the solid-state reaction E a values were lower than in the last three steps.  相似文献   
6.
Although glycosyl inositol phosphoryl ceramides (GIPCs) represent the most abundant class of sphingolipids in plants, they still remain poorly characterized in terms of structure and biodiversity. More than 50 years after their discovery, little is known about their subcellular distribution and their exact roles in membrane structure and biological functions. This review is focused on extraction and characterization methods of GIPCs occurring in plants and fungi. Global methods for characterizing ceramide moieties of GIPCs revealed the structures of long-chain bases (LCBs) and fatty acids (FAs): LCBs are dominated by tri-hydroxylated molecules such as monounsaturated and saturated phytosphingosine (t18:1 and t18:0, respectively) in plants and mainly phytosphingosine (t18:0 and t20:0) in fungi; FA are generally 14–26 carbon atoms long in plants and 16–26 carbon atoms long in fungi, these chains being often hydroxylated in position 2. Mass spectrometry plays a pivotal role in the assessment of GIPC diversity and the characterization of their structures. Indeed, it allowed to determine that the core structure of GIPC polar heads in plants is Hex(R1)-HexA-IPC, with R1 being a hydroxyl, an amine, or a N-acetylamine group, whereas the core structure in fungi is Man-IPC. Notably, information gained from tandem mass spectrometry spectra was most useful to describe the huge variety of structures encountered in plants and fungi and reveal GIPCs with yet uncharacterized polar head structures, such as hexose–inositol phosphoceramide in Chondracanthus acicularis and (hexuronic acid)4–inositol phosphoceramide and hexose–(hexuronic acid)3–inositol phosphoceramide in Ulva lactuca.
Figure
Example of GIPC with its three building blocks (fatty acid, FA; long chain base, LCB; polar head) where R1 could be a hydroxyl, an amine or a N-acetylamine group  相似文献   
7.
8.
Electrical conductivity, dielectric permittivity and mechanical hardness of the polycrystalline CeO2 + xSm2O3 (x = 0, 10.9–15.9 mol %) films prepared by Electron Beam Physical Vapour Deposition (EB-PVD) and Ionic Beam Assisted Deposition, (IBAD), techniques were investigated in dependence on their structure and microstructure influenced by the deposition conditions, namely composition, deposition temperature and Ar+ ion bombardment. The electrical conductivity of doped ceria prepared without Ar+ ion bombardment and investigated by the impedance spectroscopy, IS, was found to be predominantly ionic one under the oxidizing atmosphere/low-temperature conditions and the higher amounts of Sm2O3 (>10 mol %) used. The bulk conductivity as a part of total measured conductivity was a subject of interest because the grain boundary conductivity was found to be ∼3 orders of magnitude lower than the corresponding bulk conductivity. Ar+ ion bombardment acted as a reducer (Ce4+ → Ce3+) resulting in the development of electronic conductivity. Dielectric permittivity determined from the bulk parallel capacitance measured at room temperature and the frequency of 1 MHz, similarly as the mechanical hardness measured by indentation (classical Vickers and Depth Sensing Indentation-DSI) techniques were also found to be dependent on the deposition conditions. The approximative value of hardness for the investigated films deposited on the substrate was estimated using a simple phenomenological model described by the power function HV = HV 0 + aP b and compared with the so-called apparent hardness (substrate + investigated film) determined by the classical Vickers formula. Results obtained are analyzed and discussed.  相似文献   
9.
Bur SK  Lynch SM  Padwa A 《Organic letters》2002,4(4):473-476
[reaction: see text] Various factors that influence the rate of the intramolecular Diels-Alder reaction of amidofurans were investigated with density functional theory calculations using the Becke3LYP/6-31G* model. Conformational effects imposed by the placement of a carbonyl group within the tether, combined with a rotational bias about the C(2)-N bond, account for the observed rate differences in the thermal chemistry of these amidofurans.  相似文献   
10.
Experimental and computational studies probing the nature of intermediates in the α-amination of aldehydes catalyzed by prolinate salts support an enamine carboxylate intermediate in the stereodetermining step.  相似文献   
1 [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号