排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
在程序升温条件下 ,用DSC研究了标题化合物的放热分解反应动力学 .用线性最小二乘法、迭代法以及二分法与最小二乘法相结合的方法 ,以积分方程、微分方程和放热速率方程拟合DSC数据 .在逻辑选择建立了微分和积分机理函数的最可几一般表达式后 ,用放热速率方程得到相应的表观活化能 (Ea)、指前因子 (A)和反应级数 (n)的值 .结果表明 :该反应的微分形式的经验动力学模式函数、Ea 和A值分别为 (1-α) 0 .44、2 30 .4kJ/mol和 10 18.16s-1.借助加热速率和所得动力学参数值 ,提出了标题化合物放热分解反应的动力学方程 .该化合物的热爆炸临界温度为 30 2 .6℃ .上述动力学参数对分析、评价标题化合物的稳定性和热变化规律十分有用 . 相似文献
2.
Synthesis,Characterization and Thermal Behaviors of 4-Amino-5-nitro-1,2,3-triazole(ANTZ)and Its Derivatives 总被引:1,自引:0,他引:1
4‐Amino‐5‐nitro‐1,2,3‐triazole (ANTZ) and its derivatives, such as 2‐(4‐amino‐5‐nitro‐1,2,3‐trazole‐1‐yl)‐1,3,5‐trinitrobenzene (T‐ANTZ) and 4‐amino‐5‐nitro‐1,2,3‐triazole (M‐ANTZ), were synthesized and characterized, whose structures were confirmed by IR, NMR and elemental analysis. The thermal behaviors of ANTZ, T‐ANTZ and M‐ANTZ were studied by the methods of DSC and TG‐DTG, and the results showed that there is an obvious melting process of ANTZ with melting point of 278.38°C, while there is no melting process in the thermal behavior of T‐ANTZ and M‐ANTZ (the derivatives of ATNZ). 相似文献
3.
采用分子动力学方法,在正侧(NVT)系综下研究了N-脒基脲二硝酰胺盐(FOX-12)在溶剂中的晶体形貌.通过构建溶剂分子层-晶面的界面吸附模型模拟其动力学平衡构型,计算溶剂与晶体表面间的结合能,进而对真空附着能进行修正并获得溶剂条件下的晶貌.使用自然冷却法在水和水/甲醇中培养FOX-12晶体并利用扫描电子显微镜进行了表征.结果表明,在真空条件下决定FOX-12晶貌的6个重要晶面为(110),(200),(201),(011),(002)和(111);FOX-12在水溶液条件下的主要晶面为(110)和(011),在水/甲醇溶液条件下的主要晶面为(200)和(011),预测的晶体形貌与实验结果相吻合.对水分子和FOX-12的(110)面间的径向分布函数进行了计算,分析了水分子和晶面间的分子间作用力. 相似文献
4.
1,3,5-三硝基-六氢化-1,3,5-三嗪-2(1H)-酮(Keto-RDX)新法合成、晶体结构和热性能研究 总被引:1,自引:0,他引:1
研究了1,3,5-三硝基-六氢化-1,3,5-三嗪-2(1H)-酮(Keto-RDX)的合成新方法,以乌洛托品和硝基胍为原料,通过Mannich反应得到2-硝亚胺基-六氢化-1,3,5-三嗪盐酸盐(NIHT·HCl),用HNO3/AC2O硝化可得Keto-RDX,并采用核磁共振、红外、质谱以及元素分析等进行了结构表征.培养了Keto-RDX单晶,晶体结构解析表明:晶体属于正交晶系,空间群Pnma,晶胞参数a=1.0057(17)nm,b=1.3483(2)nm,c=0.5982(10)nm,V=0.8112(2)nm3,Z=4,Dc=1.933 g/cm3,μ=0.188 mm-1,F(000)=480.差示扫描量热(DSC)法和热失重(TG/DTG)法分析表明,Keto-RDX分解峰温为211.4℃(DSC),在185.00~202.79℃为固相分解阶段,峰温为198.61℃,质量损失为21.45%,在202.79~230.00℃为液相分解阶段,质量损失为77.83%,峰温为213.78℃,热稳定性较RDX差. 相似文献
5.
(C6H(14)N2)[NH4(ClO4)3] is a newly developed porous hybrid inorganic-organic framework material with easy access and excellent detonation performances,however,its thermal properties is still unclear and severely hampered further applications.In this study,thermal behaviors and non-isothermal decomposition reaction kinetics of(C6H(14)N2)[NH4(ClO4)3] were investigated systematically by the combination of differential scanning calorimetry(DSC) and simultaneous thermal analysis methods.In-situ FTIR spectroscopy technology was applied for investigation of the structure changes of(C6H(14)N2) NH4(ClO4)3]and some selected referents for better understanding of interactions between different components during the heating process.Experiment results indicated that the novel molecular perovskite structure renders(C6H(14)N2)[NH4(ClO4)3] better thermal stability than most of currently used energetic materials.Underhigh temperature s,the stability of the cage skeleton constructed by NH4^+and ClO4^-ions determined the decomposition process rather than organic moiety confined in the skeleton.The simple synthetic method,good detonation performances and excellent thermal properties make(C6H(14)N2)[NH4(ClO4)3] an ideal candidate for the preparation of advanced explosives and propellants. 相似文献
6.
2,3-二羟甲基-2,3-二硝基-1,4-丁二醇四硝酸酯的合成、晶体结构及性能研究 总被引:1,自引:0,他引:1
以硝基甲烷为起始原料,经缩合、环化、氧化耦合、脱缩酮及硝化等5步反应合成了2,3-二羟甲基-2,3-二硝基-1,4-丁二醇四硝酸酯(BHDBT),总收率为36.1%,并采用核磁共振谱、红外光谱以及元素分析等进行了结构表征.用浓盐酸代替氯化氢气体,改进了关键中间体2,3-二羟甲基-2,3-二硝基-1,4-丁二醇(BHDB)的合成方法,并确定最佳反应条件为:刀(浓盐酸):n(BDND)=1.1∶1,反应温度55℃,时间4h,收率为94.8%.首次发现了BHDB和BHDBT的亚甲基质子具有磁不等价性,并从理论上分析其产生的原因.培养了BHDBT单晶,四元衍射晶体结构解析表明:BHDBT属于单斜晶系,空间群P2(1)/n,晶胞参数:a=0.81944(11) nm,b=2.3365(3) nm,c=0.85838(11) nm,a=90°,β=113.501(2)°,y=90°,V=1.5072(3) nm3,Z=4,Dc=1.852 g·cm-3,μ=0.189 mm-1,F(000)=856.BHDBT熔点为86.37℃,分解峰温度为185.79℃(DSC),摩擦感度为100% (3.92 MPa,90°),特性落高H50为10.0 cm(5 kg). 相似文献
7.
8.
Jing Zhou Junlin Zhang Shaoli Chen Fengqi Zhao Lili Qiu Zihui Meng Li Ding Bozhou Wang Qing Pan 《Molecules (Basel, Switzerland)》2022,27(3)
Molecular perovskites are promising practicable energetic materials with easy access and outstanding performances. Herein, we reported the first comparative thermal research on energetic molecular perovskite structures of (C6H14N2)[NH4(ClO4)3], (C6H14N2)[Na(ClO4)3], and (C6H14ON2)[NH4(ClO4)3] through both calculation and experimental methods with different heating rates such as 2, 5, 10, and 20 °C/min. The peak temperature of thermal decompositions of (C6H14ON2)[NH4(ClO4)3] and (C6H14N2) [Na(ClO4)3] were 384 and 354 °C at the heating rate of 10 °C/min, which are lower than that of (C6H14N2)[NH4(ClO4)3] (401 °C). The choice of organic component with larger molecular volume, as well as the replacement of ammonium cation by alkali cation weakened the cubic cage skeletons; meanwhile, corresponding kinetic parameters were calculated with thermokinetics software. The synergistic catalysis thermal decomposition mechanisms of the molecular perovskites were also investigated based on condensed-phase thermolysis/Fourier-transform infrared spectroscopy method and DSC-TG-FTIR-MS quadruple technology at different temperatures. 相似文献
9.
Yifen Luo Bozhou Wang Guofang Zhang Yanshui Zhou Peng Lian 《Journal of heterocyclic chemistry》2013,50(2):381-385
1,3‐Dipolar cycloaddition reaction between nitrile oxide and alkyne was used to capture 3‐amino‐4‐oxycyanofurazan (AOCF), which was considered as the key intermediate during the synthesis of 3,4‐bis(4‐aminofurazano‐3‐yl)furoxan (DATF) from 3‐amino‐4‐chloroximinofurazan. The isolated isoxazoles from the reaction afforded evidences for the existence of AOCF. The structures of the isoxazoles were characterized by IR, 1H NMR, 13C NMR, MS, and elemental analysis. In addition, single crystal X‐ray diffraction of one isoxazole was obtained. 相似文献
10.
Kangzhen Xu Min Wang Hang Zhang Biao Yan Jirong Song Bozhou Wang Fengqi Zhao 《中国化学》2011,29(11):2293-2300
A new energetic material, 4,5‐diacetoxyl‐2‐(dinitromethylene)‐imidazolidine (DADNI), was synthesized by the reaction of 4,5‐dihydroxyl‐2‐(dinitromethylene)‐imidazolidine (DDNI) and acetic anhydride, and characterized by single crystal X‐ray diffraction. Crystal data for DADNI are monoclinic, space group C2/c, a=15.9167(3) Å, b=8.6816(4) Å, c=8.5209(3) Å, β=103.294(9)°, V=1145.9(3) Å3, Z=4, µ=0.150 mm−1, F(000)=600, Dc=1.682 g·cm−3, R1=0.0565 and wR2=0.1649. Thermal decomposition behavior of DADNI was studied and an intensely exothermic process was observed. The kinetic equation of the decomposition reaction is: dα/dT=(1016.64/β)×4α3/4exp(−1.582×105/RT). The critical temperature of thermal explosion is 163.76°C. The specific heat capacity of DADNI was studied with micro‐DSC method and theoretical calculation method. The molar heat capacity is 343.30 J·mol−1·K−1 at 298.15 K. The adiabatic time‐to‐explosion of DADNI was calculated to be 87.7 s. 相似文献