排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Large magnetic entropy change near room temperature in the LaFe11.5Si1.5H1.3 interstitial compound 总被引:2,自引:0,他引:2 下载免费PDF全文
The LaFe11.5Si1.5H1.3 interstitial compound has been prepared. Its Curie temperature TC (288 K) has been adjusted to around room temperature, and the maximal magnetic entropy change (|ΔS|~17.0 J·kg-1·K-1 at TC) is larger than that of Gd (|ΔS|~9.8 J·kg-1·K-1 at TC=293 K) by ~73.5% under a magnetic change from 0 to 5 T. The origin of the large magnetic entropy change is attributed to the first-order field-induced itinerant-electron metamagnetic transition. Moreover, the magnetic hysteresis of LaFe11.5Si1.5H1.3 under the increase and decrease of the field is very small, which is favourable to magnetic refrigeration application. The present study suggests that the LaFe11.5Si1.5H1.3 compound is a promising candidate as a room-temperature magnetic refrigerant. 相似文献
2.
3.
4.
Large magnetic entropy change and magnetic properties in La (Fel-xMnx)ll.TSil.3Hy compounds 总被引:1,自引:0,他引:1 下载免费PDF全文
Magnetic properties and magnetic entropy change in La(Fe_{1-x}Mn_x)_{11.7}Si_{1.3}H_y compounds have been investigated. A significant increase of the Curie temperature T_C and a small increase of the saturation magnetizations μ_S have been observed after the introduction of interstitial H, which caused a slight volume expansion. The first-order field-induced itinerant-electron metamagnetic (IEM) transition remains and brings about a large magnetic entropy change around room temperatures for the compounds. The maximal magnetic entropy change is about 23.4, 17.7 and 15.9J/kg·K under a magnetic field change from 0 to 5T for x=0.01, 0.02 and 0.03, respectively. Therefore, the compounds appear to be potential candidates for magnetic refrigerants around room temperatures. 相似文献
5.
Magnetism and magnetic entropy change in LaFe11Al2Cx compounds around room temperature 总被引:1,自引:0,他引:1 下载免费PDF全文
Magnetism and magnetic entropy changes in LaFe11A12Cx(x=0.0, 0.2 and 0.5) compounds have been investigated.The Curie temperature TC is conveniently controlled from 200K to room temperature by varying the carbon concentration.Large magnetic entropy change is obtained over a wide temperature range due to the high magnetization and the drastic decrease in the magnetization around TC.The large magnetic entropy change in wide temperature range,low cost and the convenience of controlling TC suggest that the LaFe11Al2Cx compounds are promising candidates for magnetic refrigerants in the corresponding temperature range. 相似文献
6.
Magnetoresistances and magnetic entropy changes associated with negative lattice expansions in NaZn13-type compounds LaFeCoSi 下载免费PDF全文
Magnetoresistances and magnetic entropy changes in NaZn13-type compounds La(Fel-xCox)11.9Si1.1 (x=0.04, 0.06, and 0.08) with Curie temperatures of 243 K, 274 K, and 301 K, respectively, are studied. The ferromagnetic ordering is accompanied by a negative lattice expansion. Large magnetic entropy changes in a wide temperature range from ~230 K to ~320 K are achieved. Raising Co content increases the Curie temperature but weakens the magnetovolume effect, thereby causing a decrease in magnetic entropy change. These materials exhibit a metallic character below Tc, whereas the electrical resistance decreases abruptly and then recovers the metal-like behaviour above Tc. Application of a magnetic field retains the transitions via increasing the ferromagnetic ordering temperature. An isothermal increase in magnetic field leads to an increase in electrical resistance at temperatures near but above Tc, which is a consequence of the field-induced metamagnetic transition from a paramagnetic state to a ferromagnetic state. 相似文献
7.
Change in the magnetic ground state of LaFe11.4Al1.6 compound by the substitution of Mn for Fe 下载免费PDF全文
The structure and magnetic properties of La(Fe_{1-x}Mn_x)_{11.4}Al_{1.6} (0≤x≤0.25)compounds have been studied. The NaZn_{13}-type structure is preserved and the lattice parameter increases linearly with increasing the Mn concentration. The magnetic ground state changes from the antiferromagnetic to the spin-glass or the cluster-glass state by the substitution of Mn for Fe. Furthermore, a field-induced transition from cluster glass to ferromagnet is found for the samples with x=0.05 and 0.10. 相似文献
8.
10.
研究了具有菱方Th2Zn17型结构的Ce2Fe16Al化合物在居里温度TC附近的磁性和磁熵变.实验结果表明,在居里温度附近样品的磁特性符合二级相变规律,样品的居里温度为2758K.通过磁化强度与磁场和温度关系的测量,计算出临界指数β=044±001,γ=130±001,δ=383±001,临界指数β,γ,δ基本满足标度率方程γ=β(δ-1),但偏离三维Heisenberg模型的理论值.Ce2Fe16Al化合物的磁熵变在居里温度处达到峰值,2T外磁场下的最大磁熵变为195J/kg K.
关键词:
Ce2Fe16Al化合物
临界指数
磁熵变 相似文献