This paper presents the flow and heat transfer characteristics of an electrically conducting Casson fluid past an exponentially stretching curved surface with convective boundary condition. The fluid motion is assumed to be laminar and time dependent. The effects of temperature-dependent thermal conductivity, Joule heating, thermal radiation, and variable heat source/sink are deemed. Suitable transformations are considered to transform the governing partial differential equations as ordinary ones and then solved by the numerical procedures like shooting and Runge–Kutta method. Graphs are outlined to describe the influence of various dimensionless parameters on the fields of velocity and temperature and observe that there is an enhancement in the field of temperature with the radiation, temperature-dependent thermal conductivity, and irregular heat parameters. Also, the Casson parameter has a tendency to suppress the distribution of momentum but an inverse development is noticed for the curvature parameter. Attained outcomes are also compared with the existing literature in the limiting case, and good agreement is perceived.
相似文献