首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   13篇
力学   6篇
数学   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2012年   2篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
排序方式: 共有20条查询结果,搜索用时 0 毫秒
1.
2.
We have investigated the HO(2) adsorption and acid dissociation process on the surface of (H(2)O)(20) and (H(2)O)(21) clusters by using quantum-chemistry calculations. Our results show that the radical forms a stable hydrogen-bond complex on the cluster. The HO(2) acid dissociation is more favorable in the case of the (H(2)O)(21) cluster, for which the inner water molecule plays a crucial role. In fact, acid dissociation of HO(2) is found to occur in two steps. The first step involves H(2) O autoionization in the cluster, and the second one involves the proton transfer from the HO(2) radical to the hydroxide anion. The presence of the HO(2) radicals on the surface of the cluster facilitates water autoionization in the cluster.  相似文献   
3.
Structural Chemistry - Hydrogen polyoxides are important species in atmospheric chemistry, advanced oxidation processes for wastewater treatment, and biological processes, among other fields....  相似文献   
4.
A theoretical model to investigate chemical processes in solution is described. It is based on the use of a coupled density functional/molecular mechanics Hamiltonian. The most interesting feature of the method is that it allows a detailed study of the solute's electronic distribution and of its fluctuations. We present the results for isothermal-isobaric constant-NPT Monte Carlo simulation of a water molecule in liquid water. The quantum subsystem is described using a double-zeta quality basis set with polarization orbitals and nonlocal exchange-correlation corrections. The classical system is constituted by 128 classical TIP3P or Simple Point Charge (SPC) water molecules. The atom-atom radial distribution functions present a good agreement with the experimental curves. Differences with respect to the classical simulation are discussed. The instantaneous and the averaged polarization of the quantum molecule are also analyzed. © 1996 by John Wiley & Sons, Inc.  相似文献   
5.
6.
Molecular dynamics simulations of organolithium aggregates in solution are reported for the first time. We use a combined quantum/classical force field (the so-called QM/MM approach) and study ethyl-lithium aggregates in dimethyl ether (DME) solvent. The solutes are described at the Density Functional Theory level while solvent molecules are described using molecular mechanics. NVT Molecular Dynamics simulations at 200 K are carried out in the Born–Oppenheimer approximation. After equilibration, the production phase was run for 80 ps (monomer), 40 ps (dimer) and 26 ps (tetramer). The analysis of the results focuses on Li coordination as a function of aggregate size and we show that the total Li coordination number is always 4. No decoordination has been observed along the simulations. Fluctuations of the structures are predicted to be large in some cases and possible implications on reactivity are discussed.  相似文献   
7.
8.
This work presents an alternative numerical procedure for simulating a class of nonlinear hyperbolic systems, using Glimm's method for advancing in time. The standard procedure to implement this methodology suffers from the disadvantage of requiring a complete solution of the associated Riemann problem—a task, in general, not easily reached. The alternative procedure introduced in this article consists in approximating the solution of the associated Riemann problem by piecewise constant functions always satisfying the jump condition—thus circumventing the difficulty of solving the Riemann problem and giving rise to an approximation easier to implement with lower computational cost. In order to illustrate the good performance of the alternative methodology proposed, two problems are considered—namely the transport of a pollutant in the atmosphere and the dynamics of the filling up of a rigid porous medium, modeled under a mixture theory viewpoint. Comparison with the standard procedure, employing the complete solution of the associated Riemann problem for implementing Glimm's scheme, has shown good agreement.  相似文献   
9.
Photosensitization reactions are believed to provide a key contribution to the overall oxidation chemistry of the Earth''s atmosphere. Generally, these processes take place on the surface of aqueous aerosols, where organic surfactants accumulate and react, either directly or indirectly, with the activated photosensitizer. However, the mechanisms involved in these important interfacial phenomena are still poorly known. This work sheds light on the reaction mechanisms of the photosensitizer imidazole-2-carboxaldehyde through ab initio (QM/MM) molecular dynamics simulations and high-level ab initio calculations. The nature of the lowest excited states of the system (singlets and triplets) is described in detail for the first time in the gas phase, in bulk water, and at the air–water interface, and possible intersystem crossing mechanisms leading to the reactive triplet state are analyzed. Moreover, the reactive triplet state is shown to be unstable at the air–water surface in a pure water aerosol. The combination of this finding with the results obtained for simple surfactant-photosensitizer models, together with experimental data from the literature, suggests that photosensitization reactions assisted by imidazole-2-carboxaldehyde at the surface of aqueous droplets can only occur in the presence of surfactant species, such as fatty acids, that stabilize the photoactivated triplet at the interface. These findings should help the interpretation of field measurements and the design of new laboratory experiments to better understand atmospheric photosensitization processes.

First-principles molecular dynamics simulations of imidazole-2-carboxaldehyde at the air–water interface highlight the role of surfactants in stabilising the reactive triplet state involved in photosensitisation reactions in aqueous aerosols.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号