首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
化学   13篇
力学   1篇
物理学   2篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  1983年   1篇
  1975年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Kinetics and mechanism of nitration of aromatic compounds using trichloroisocyanuric acid (TCCA)/NaNO2, TCCA-N,N-dimethyl formamide (TCCA-DMF)/NaNO2, and TCCA-N,N-dimethyl acetamide (TCCA-DMA)/NaNO2 under acid-free and Vilsmeier-Haack conditions. Reactions followed second-order kinetics with a first-order dependence on [Phenol] and [Nitrating agent] ([TCCA], [(TCCA-DMF)], or [(TCCA-DMA)] >> [NaNO2]). Reaction rates accelerated with the introduction of electron-donating groups and retarded with electron-withdrawing groups, but did not fit well into the Hammett's theory of linear free energy relationship or its modified forms like Brown-Okamoto or Yukawa-Tsuno equations. Rate data were analyzed by Charton's multiple linear regression analysis. Isokinetic temperature (β) values, obtained from Exner's theory for different protocols, are 403.7 K (TCCA-NaNO2), 365.8 K (TCCA-DMF)/NaNO2, and 358 K (TCCA-DMA)/NaNO2. These values are far above the experimental temperature range (303-323 K), indicating that the enthalpy factors are probably more important in controlling the reaction.  相似文献   
2.
3.

In this paper, boundary regions of 1-D linear piecewise-smooth discontinuous maps are examined analytically. It is shown that, under certain parameter conditions, maps exhibit atypical orbits like a continuum of periodic orbits and quasi-periodic orbits. Further, we have derived the conditions under which such phenomenon occurs. The paper also illustrates that there exists a specific parameter region where as the parameter is varied, there is a transition from stable to unstable periodic orbits. Moreover, we have derived an expression for the value of parameter at which this transition from stable to unstable periodic orbits occurs. Additionally, the dynamics concerning this value of parameter is also given.

  相似文献   
4.
5.
Abstract

N, N’-dimethyl formamide (DMF) mediated Vilsmeier–Haack (VH) adducts with 1,3,5-triazine compunds such as trichloroisocyanuric acid (TCCA) and trichlorotriazine (TCTA) were prepared by replacing classical oxy chlorides POCl3, and SOCl2, which were explored as efficient catalysts for the transesterification of β-ketoesters. The prepared (TCCA/DMF) and (TCTA/DMF) adducts improved greenery of the classical Vilsmeier–Haack reagents (POCl3/DMF), and (SOCl2/DMF), and demonstrated their better efficient catalytic ativity. Reaction times were in the range: 3.5 to 6.5?hr (SOCl2/DMF); 2.8–5.2?hr (POCl3/DMF); 2.5–5.2?hr (TCCA/DMF) and 2.5–5.0?hr (TCTA/DMF) catalytic systems. Ultrasonically (US) assisted protocols with these reagents further reduced the reaction times (two to three times), while microwave assisted (MW) protocols with these reagents were much more effective. The reactions could be completed in only few seconds (less than a minute) in MWassisted protocols as compared to US assited reactions, followed by good product yields.  相似文献   
6.
Recent spectroscopic investigations of various amino acids report intriguing high‐pressure and low‐temperature behavior of NH3+ groups and their influence on various hydrogen bonds in the system. In particular, the variation of the intensity of NH3+ torsional mode at different temperatures and pressures has received much attention. We report here the first in situ Raman investigations of fully deuterated α‐glycine up to ∼20 GPa. The discontinuous changes in COO and ND3+ modes across ∼3 GPa indicate subtle structural rearrangements in fully deuterated α‐glycine. The decrease in the intensity of ND3+ torsional mode is found to be similar to that of undeuterated α‐glycine. The pressure‐induced stiffening of N D and CD2 stretching modes are discussed in the context of changes in the hydrogen‐bonding interactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
7.
Research in the field of organic photovoltaics has gained considerable momentum in the last two decades owing to the need for developing low-cost and efficient energy harvesting systems. Elegant molecular architectures have been designed, synthesized and employed as active materials for photovoltaic devices thereby leading to a better molecular structure-device property relationship understanding. In this perspective, we outline new macromolecular scaffolds that have been designed within the purview of each of the three fundamental processes involving light harvesting, charge separation and charge transport.  相似文献   
8.
9.
Resveratrol, the red-wine polyphenol, is intensively studied polyphenols for its pleiotropic biological effects. A plethora of health beneficial effects of this stilbene has been reported including cardio-protective, neuro-protective, anti-cancer, anti-diabetic and interesting anti-aging. Though it has been proposed that these effects of resveratrol arise from its capacity to interact with multiple molecular targets involved in diverse intracellular pathways including activation of sirtuins, the antioxidant property of this compound is the most described one to attribute its diverse health beneficial effects. In the present review we have explained the biological activities of resveratrol with the latest laboratory evidences towards its antioxidant effects.  相似文献   
10.
We report the syntheses and properties of thienopyrrole based unsymmetrical and extended heteroacenes, which are isoelectronic with heptacene (30π) and nonacene (38π), respectively. Optical and electrochemical properties of these seven and nine rings fused systems are studied. The optoelectronic properties of the syn and anti-isomers of the unsymmetrical heteroacenes are also compared. The influence of the position of the heteroatoms in the fused corona, upon the optical and electrochemical properties, is rationalized based on the contributions from the benzenoid vs. quinonoid-type structures of these molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号