排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
开展了PBX炸药的动态Brazilian试验,获得了不同加载应变率条件下的拉伸强度;通过高速摄影,获得了PBX炸药试样表面裂纹的产生发展过程;采用数字散斑相关方法,获得了试样出现裂纹前的应变场分布。利用离散元方法,开展了考虑PBX炸药细观结构的动态Brazilian数值模拟,获得了损伤演化发展、并形成裂纹的全过程,模拟结果能初步再现PBX炸药的损伤破坏过程。 相似文献
2.
热点的形成、点火以及成长过程是理解非均匀炸药冲击起爆的关键.采用离散元法,对冲击作用下含孔洞的HMX晶体进行了细观数值模拟.计算结果表明:在较低冲击作用下,孔洞边缘发生了较大的剪切变形,粘塑性功形成热点;而在较高冲击作用下,孔洞塌缩产生射流,汇聚流动,冲击下游炸药形成热点,并获得了孔洞塌缩和热点生成演化的细观过程. 相似文献
3.
对有关ALAD基因多态性与血铅水平关系的研究进行了meta分析。通过Medline、CBMDisc及同行收集 1 7篇文献 ,剔除重复报道或不合格文献后共有 9个独立研究纳入meta分析。结果表明 ,对低水平接触人群 (血铅 <1 0 μg/dL) ,效应尺度d的均值为 0 1 3 8(P =0 0 46) ;对高水平接触人群 (血铅 >2 0 μg/dL) ,效应尺度d的均值为 0 484(P =0 0 0 0 )。两组人群的基因型分布频率没有差异 ,ALAD1- 2 / 2 - 2 和ALAD1- 1分别占总人群的 89 3 %和 1 0 7%。结论为ALAD基因多态性可影响血铅水平 ,但还需完善设计进一步研究。铅接触水平可能会改变ALAD基因多态性对血铅水平的影响 相似文献
4.
为加深水下近距/接触爆炸加载下圆柱壳结构动态响应行为认识,设计典型圆柱壳结构模型,开展了水下近距/接触爆炸加载下圆柱壳结构动态响应光电联合测试,获得了冲击波、气泡与圆柱壳结构相互作用高速光学物理图像、动态应变、超压载荷、毁伤模式等试验数据。通过高速光学物理图像和三维激光扫描毁伤形态的分析,给出了冲击波、气泡与圆柱壳结构相互作用物理过程及最终毁伤模式;通过动态应变的分析,给出了圆柱壳结构迎爆面和背爆面在加载过程中应变拉伸压缩转变和响应阶段的划分;通过超压载荷的分析,明确了装药爆轰完全性以及接触爆炸加载下结构吸能对超压的影响。研究表明:爆距的变化会显著影响圆柱壳结构的毁伤形态,近距加载下圆柱壳结构主要呈现塑性大变形,接触加载下圆柱壳结构主要呈现撕裂破坏;近距加载下圆柱壳结构迎爆面空化区的形成及溃灭形成的二次加载毁伤效应不容忽视,值得深入研究;研究成果可为水下近距/接触爆炸加载下圆柱壳结构毁伤评估提供参考和依据。 相似文献
5.
炸药燃烧的高温高压气体产物可以进入基体裂纹中引发炸药表面热传导燃烧,形成所谓的对流燃烧。在一定约束条件下,不断上升的气体压力反过来又使炸药基体产生更多的裂纹,为对流燃烧提供更多的通道和燃烧表面积,快速生成大量产物气体导致高烈度反应现象的产生。本文中设计了一种新型强约束球形装药中心点火实验,针对一种HMX为基的PBX炸药,对高烈度反应条件下燃烧裂纹传播和反应增长过程进行了观测,实验中采用测得的反应压力和壳体速度历程对反应烈度进行了量化表征。在带窗口结构中,早期炸药中的燃烧裂纹不可见;中期燃烧裂纹扩展到药球表面时,先形成4条沿经线方向近似对称的主裂纹,随后环向贯通并扩展到整个药球表面;最后的剧烈反应造成强烈发光。上述反应演化经历低压增长阶段约为100 μs,之后伴随着壳体变形膨胀产生剧烈的反应,此时产物压力在约10 μs时间内超过1 GPa,并形成约20%相对于裸炸药爆轰的超压输出。在全钢结构中,20 mm厚的壳体膨胀速度最大可达到500 m/s,此时壳体完全破裂。 相似文献
6.
开展了(010)、(011)晶向HMX晶体的斜波压缩实验,获得了约15 GPa压力下的速度响应剖面。实验结果表明,HMX单晶存在明显弹塑性转变行为,且速度波形有下降趋势,这是材料的黏性效应导致,材料的弹性极限随着样品厚度增加而变化,不同晶向的材料动力学特性存在差异。结合Hobenemser-Prager黏弹塑性本构关系和三阶Birch-Murnaghan物态方程开展了HMX晶体斜波压缩物理过程的数值模拟,计算结果可以很好地描述HMX晶体的弹塑性转变这一物理过程。 相似文献
7.
在SHPB装置上开展了某典型PBX炸药的单轴压缩、间接拉伸实验。利用入射波整形技术,结合半导体应变片和石英晶体联合测试的方法,实现了PBX炸药的应力平衡和恒应变率加载,得到了不同应变率下某PBX炸药的压缩应力应变曲线,初步建立了该炸药的修正Sargin唯象模型;开展了3种PBX炸药的动态巴西实验,通过高速摄影获得了炸药的破坏过程,结合数字相关技术,获得了试样裂纹附近的应变场分布,初步建立了描述3种炸药动态拉伸行为的修正Johnson-Cook模型。模型曲线与实验结果符合较好。 相似文献
8.
为了认识慢烤过程中初始空腔体积率对HMX基PBX-3炸药热致相变以及点火响应特性的影响,设计了小尺寸强约束慢烤实验装置。在相同温升速率下,开展了空腔体积率分别为1.0%、4.2%和13.8%的约束PBX-3炸药慢烤实验,获得了炸药内部不同位置以及约束壳体表面的温度演变历程,对炸药中HMX相变过程、初始空腔体积率对HMX相变影响的机制、HMX相变进程对点火反应温度的影响进行了详细分析。结果表明:初始空腔体积率越小,HMX相变吸热表现出的温度平台持续时间越短,点火时刻约束壳体表面的温度越高。分析认为初始空腔体积率越小,慢烤加热至HMX相变温度时刻,PBX-3炸药受到的热应力越大,延缓了慢烤过程中β-HMX转化为δ-HMX的相变进程;由于δ-HMX的热感度更高,慢烤实验过程中HMX的相变进程越慢,δ-HMX放热分解反应引起的热量积累越慢,炸药点火反应时刻约束壳体的温度越高。 相似文献
9.
通过数值模拟, 计算冲击加载下样品经历一维应变加载过程和侧向稀疏过程产生的塑性功, 给出试样内部从冲击加载开始到进入回收桶前全过程的应力随时间变化的历程。结果表明:侧向稀疏过程开始后,样品在径向汇聚波的作用下受循环拉、压载荷作用,拉压循环的振幅在中等冲击压力下达到最大。如果振幅超过了材料的层裂强度,样品中心将发生拉伸破坏不能完整回收。侧向稀疏与一维应变加载产生的塑性功之比随冲击速度的增加而减小。在冲击速度为某临界值时,侧向稀疏产生的塑性功与一维应变加载产生的塑性功相等。在一定的冲击速度下,采用低初始屈服应力的材料可减轻侧向稀疏效应。对理想塑性材料的理论分析表明,侧向稀疏与一维应变加载产生的塑性功之比随冲击速度与屈服强度比值的增大而减小,与数值模拟结果一致。 相似文献
10.
采用有限元与离散元相结合的方法模拟了塑料粘结炸药在冲击载荷下热点生成的细观过程,计算中炸药晶体采用有限元法,粘结剂采用离散元法。结果表明热点多集中在晶体间变形较大的粘结剂部分,粘结剂与晶体间冲击波的相互作用是热点生成的重要原因;HMX晶体温度明显低于粘结剂,且晶体边界温度高于内部温度。 相似文献
|