首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1107篇
  免费   37篇
  国内免费   6篇
化学   902篇
晶体学   6篇
力学   13篇
数学   101篇
物理学   128篇
  2024年   1篇
  2023年   5篇
  2022年   19篇
  2021年   32篇
  2020年   32篇
  2019年   16篇
  2018年   22篇
  2017年   17篇
  2016年   34篇
  2015年   25篇
  2014年   32篇
  2013年   53篇
  2012年   75篇
  2011年   110篇
  2010年   47篇
  2009年   33篇
  2008年   86篇
  2007年   63篇
  2006年   77篇
  2005年   85篇
  2004年   59篇
  2003年   45篇
  2002年   51篇
  2001年   14篇
  2000年   10篇
  1999年   8篇
  1998年   8篇
  1997年   16篇
  1996年   17篇
  1995年   3篇
  1994年   5篇
  1993年   8篇
  1992年   6篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1987年   4篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1150条查询结果,搜索用时 9 毫秒
1.
The common methods for calculating the mass transfer across liquid-liquid interfaces in technical applications take into account the mass transfer resistances within the bulk phases. The transfer resistance of the interface and a possible coupling between the momentum and the mass transport is not taken into account. In the present paper a survey is given of theoretical approaches which can describe this coupling and the additional mass transfer resistance. A theory is proposed by Hampe which can be used to explain the coupling between momentum and mass transport employing thermodynamics of irreversible processes. On the basis of this work, the influence of the dilatation of a flat interface on the mass transfer is deduced. It is also concluded from this theory that the diffusion coefficients within the bulk phases are coupled near the thermodynamic equilibrium.  相似文献   
2.
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy.

Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).  相似文献   
3.
A new approach to fabricate polyelectrolyte microcapsules is based on exploiting porous inorganic microparticles of calcium carbonate. Porous CaCO3 microparticles (4.5-5.0 microns) were synthesized and characterized by scanning electron microscopy and the Brunauer-Emmett-Teller method of nitrogen adsorption/desorption to get a surface area of 8.8 m2/g and an average pore size of 35 nm. These particles were used as templates for polyelectrolyte layer-by-layer assembly of two oppositely charged polyelectrolytes, poly(styrene sulfonate) and poly(allylamine hydrochloride). Calcium carbonate core dissolution resulted in formation ofpolyelectrolyte microcapsules with an internal matrix consisting of a polyelectrolyte complex. Microcapsules with an internal matrix were analyzed by confocal Raman spectroscopy, scanning electron microscopy, force microscopy, and confocal laser-scanning fluorescence microscopy. The structure was found to be dependent on a number of polyelectrolyte adsorption treatments. Capsules have a very high loading capacity for macromolecules, which can be incorporated into the capsules by capturing them from the surrounding medium into the capsules. In this paper, we investigated the loading by dextran and bovine serum albumin as macromolecules. The amount of entrapped macromolecules was determined by two independent methods and found to be up to 15 pg per microcapsule.  相似文献   
4.
The flavoenzyme uridine 5'-diphosphate (UDP)-galactopyranose mutase (UGM) plays a key role in the cell wall biosynthesis of many pathogens, including Mycobacterium tuberculosis. Using a synthetic fluorescent ligand, we screened 16 000 compounds in a fluorescence polarization assay. Effective inhibitors of UGM were identified.  相似文献   
5.
Herein we report a surprisingly facile and clean synthesis of base-stabilised phosphorus(I) and arsenic(I) iodide salts, which are reagents that provide convenient access to new low oxidation state main group compounds.  相似文献   
6.
Dicobalt octacarbonyl and some of its derivatives (NaCo(CO)4, Co4(CO)12, Hg[Co(CO)4]2, [Co(CO)3PPh3]2, NaCo(CO)3PPh3) react with activated gem-dihalides, R2CX2, such as dichlorodiphenylmethane, 9,9-dihalofluorenes and dimethyl dibromomalonate, to give the ‘dimer’ olefin, R2CCR2. The course of this conversion involves formation of the coupling product, R2XCCXR2, followed by dehalogenation of the latter. These separate steps have been confirmed for activated monohalides (bromodiphenylmethane, 9-bromofluorene, dimethyl bromomalonate) which were readily coupled by cobalt carbonyls, and for activated vicinal dihalides (D,L and meso-dibromostilbene, 9,9′-dichlorobisfluorenyl) which cobalt carbonyls readily dehalogenated. A radical mechanism is favored for these processes, and indirect evidence in its favor is presented.  相似文献   
7.
Monovalent cations play an important role in many biological functions. The guanine rich sequence, d(G4T4G4), requires monovalent cations for formation of the G-quadruplex, d(G4T4G4)2. This requirement can be satisfied by thallium (Tl+), a potassium (K+) surrogate. To verify that the structure of d(G4T4G4)2 in the presence of Tl+ is similar to the K+-form of the G-quadruplex, the solution structure of the Tl+-form of d(G4T4G4)2 was determined. The 10 lowest energy structures have an all atom RMSD of 0.76 +/- 0.16 A. Comparison of this structure to the identical G-quadruplex formed in the presence of K+ validates the isomorphous nature of Tl+ and K+. Using a 1H-205Tl spin-echo difference experiment we show that, in the Tl+-form of d(G4T4G4)2, small scalar couplings (<1 Hz) exist between 205Tl and protons in the G-quadruplex. These data comprise the first 1H-205Tl scalar couplings observed in a biological system and have the potential to provide important constraints for structure determination. These experiments can be applied to any system in which the substituted Tl+ cations are in slow exchange with the bulk ions in solution.  相似文献   
8.
The effect of attaching an additional fluorine atom at C-2 in 1-fluoropropane (FP), giving 1,2-difluoropropane (DFP), on its conformational equilibrium, is theoretically evaluated. This substitution causes critical implications on the conformer stabilities of DFP (TG, GT and GG conformations) and the steric and electrostatic interactions should favor the conformer with fluorine atoms trans. However, the gauche effect plays a major role in describing the energies balance in DFP, shifting the equilibrium towards the conformation in which the two fluorine atoms are gauche. The origin of this effect is discussed through an NBO analysis, which allows the evaluation of both classical and non-classical (hyperconjugation and bent bonds) interactions as the prevailing factors governing the conformational equilibrium of molecules containing the 1,2-difluoroethane fragment.  相似文献   
9.
The energetics of interaction of a range of cyclodextrins with folded and unfolded proteins has been examined by sensitive microcalorimetry techniques. Weak interaction with exposed amino acid residues promotes unfolding and dissociation of proteins. The possibility that such interactions may facilitate the use of cyclodextrins as chaperone-mimics in the refolding of denatured protein has been explored with the enzyme phosphoglycerate kinase. Up to 40% regain of activity can be achieved in some cases.  相似文献   
10.
Batch fermentations of sugar cane bagasse hemicellulosic hydrolysate treated for removing the inhibitors of the fermentation were performed byCandida guilliermondii FTI20037 for xylitol production. The fermentative parameters agitation and aeration rate were studied aiming the maximization of xylitol production from this agroindustrial residue. The maximal xylitol volumetric productivity (0.87 g/L h) and yield (0.67 g/g) were attained at 400/min and 0.45 v.v.m. (KLa 27/h). According to the results, a suitable control of the oxygen input permitting the xylitol formation from sugar cane bagasse hydrolysate is required for the development of an efficient fermentation process for large-scale applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号