首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   0篇
化学   24篇
力学   2篇
数学   4篇
物理学   13篇
  2022年   1篇
  2019年   3篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   4篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1976年   1篇
  1975年   1篇
  1954年   1篇
  1926年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
2.
Pure organic molecules based thermally activated delayed fluorescence (TADF) emitters have been successfully developed in recent years for their propitious application in highly efficient organic light emitting diodes (OLEDs). In the case of orange red emitters, the non-radiative process is known to be a serious issue due to its lower lying singlet energy level. However, recent studies indicate that there are tremendous efforts put to develop efficient orange red TADF emitters. In addition, the external quantum efficiency (EQE) of heteroaromatic based orange red TADF OLEDs surpassed 30 %. Such heteroaromatic type emitters showed wide emission spectra; therefore, more attention is being paid to develop highly efficient orange red TADF emitters along with good color purity. Herein, the recent progress of orange red TADF emitters based on molecular structures, such as cyanobenzene, heteroaromatic, naphthalimide, and boron-based acceptors, are reviewed. Further, our insight on these acceptors has been provided by their photophysical studies and device performances. Future perspectives of orange red TADF emitters for real practical applications are discussed.  相似文献   
3.
Spatially resolved functionalization of 2D materials is highly demanded but very challenging to achieve. The chemical patterning is typically tackled by preventing contact between the reagent and material, which brings various accompanying challenges. Photochemical transformation on the other hand inherently provides remote high spatiotemporal resolution using the cleanest reagent—a photon. Herein, we combine two competing reactions on a graphene substrate to create functionalization patterns on a micrometer scale via the Mitsunobu reaction. The mild reaction conditions allow introduction of covalently dynamic linkages, which can serve as reversible labels for surface‐ or graphene‐enhanced Raman spectroscopy characterization of the patterns prepared. The proposed methodology thus provides a pathway for local introduction of arbitrary functional groups on graphene.  相似文献   
4.
Azide telechelics of poly(dimethylsiloxane) (PDMS), polypropylene oxide (PPO), and polyethylene oxide (PEO) were synthesized from the corresponding epoxy telechelics and characterized. These oligomeric azides were chain extended by reaction with bispropargyl ether of bisphenol A (BPEBA) through a copper‐catalyzed azide‐alkyne cycloaddition (CuAAC) reaction. PDMS manifested a faster reaction in contrast to PPO or PEO. The chain‐extended polymers underwent cross‐linking above 170°C through thermal cleavage of residual (terminal) azide groups. This was manifested in their rheograms and was further substantiated by FTIR and NMR spectroscopic analyses. Dynamic mechanical analyses of the cross‐linked polymers exhibited characteristic transitions of hard and soft segments, implying microphase separation in the system. Microscopic evaluation of the thermally cross‐linked sample revealed a porous morphology with microsized to nanosized pores.  相似文献   
5.
Ground water has increasingly taken its place in the provision of safe, potable supply in the developing world. Large investments have been made in infrastructural development for rural ground water supply schemes, but far too little attention has been given to assess the sustainability of these supplies. Overexploitation of aquifers, evident in failing boreholes and deteriorating water quality, has become a world-wide concern. Developments in physics half a century ago established the basis of isotope hydrology. Radioactive isotopes give information on ground water dynamics and recharge rates whilst non-radioactive - or stable - isotopes indicate origins of ground water and delineate ground water bodies. Environmental isotope hydrology is increasingly seen as a powerful discipline in assessing ground water systems. This is particularly important in developing environments, where historical data is rarely available. Brief examples are presented of isotope applications to collaborative ground water studies conducted at the University of the Witwatersrand. Recharge estimates based on isotope snapshot data conform well with results from subsequent long-term water level observations in the Kalahari of Botswana. The importance is demonstrated of irrigation return flow and pollution hazard to the Lomagundi dolomite of Zimbabwe. Isotopes suggest the source of high nitrate concentrations to an important ground water supply in Tanzania. Mechanisms of the release of arsenic into millions of tube wells in Bangladesh are put into perspective. Isotope hydrology as appropriate technology is highlighted in terms of its cost-effectiveness and the investigative empowerment of local investigators.  相似文献   
6.
We have recently shown that the sensitivity of single- and multiple-quantum NMR experiments of half-integer (N/2) quadrupolar nuclei can be increased significantly by introducing so-called double frequency sweeps (DFS) in various pulse schemes. These sweeps consist of two sidebands generated by an amplitude modulation of the RF carrier. Using a time-dependent amplitude modulation the sidebands can be swept through a certain frequency range. Inspired by the work of Vega and Naor (J. Chem. Phys. 75, 75 (1981)), this is used to manipulate +/-(m - 1) <--> +/-m (3/2 < or = m < or = N/2) satellite transitions in half-integer spin systems simultaneously. For (23)Na (I = 3/2) and (27)Al (I = 5/2) spins in single crystals it proved possible to transfer the populations of the outer +/-m spin levels to the inner +/-1/2 spin levels. A detailed analysis shows that the efficiency of this process is a function of the adiabaticity with which the various spin transitions are passed during the sweep. In powders these sweep parameters have to be optimized to satisfy the appropriate conditions for a maximum of spins in the powder distribution. The effects of sweep rate, sweep range, and RF field strength are investigated both numerically and experimentally. Using a DFS as a preparation period leads to significantly enhanced central transition powder spectra under both static and MAS conditions, compared to single pulse excitation. DFSs prove to be very efficient tools not only for population transfer, but also for coherence transfer. This can be exploited for the multiple- to single-quantum transfer in MQMAS experiments. It is demonstrated, theoretically and experimentally, that DFSs are capable of transferring both quintuple-quantum and triple-quantum coherence into single-quantum coherence in I = 5/2 spin systems. This leads to a significant enhancement in signal-to-noise ratio and strongly reduces the RF power requirement compared to pulsed MQMAS experiments, thus extending their applicability. This is demonstrated by (27)Al 3QMAS experiments on 9Al(2)O(3). 2B(2)O(3) and the mineral andalusite. In the latter compound, Al experiences a quadrupolar-coupling constant of 15.3 MHz in one of the sites. Finally a 5QMAS spectrum on 9Al(2)O(3). 2B(2)O(3) demonstrates the sensitivity enhancement of this experiment using a double frequency sweep.  相似文献   
7.
8.
An anisotropic triangular Ising model in which the first- and second-order parameters and the field parameters are functionally related is solved exactly by representing the distribution of the atom patterns in terms of a suitably constructed Markov process. The probabilities of patterns, defined as the probabilities generated by this process, are a mathematically tractable alternative to the classical representation of these probabilities in terms of the partition function. The interaction and field parameters of this Ising model, its magnetization, free energy, and its nearest neighbor correlation functions, are expressed in terms of the parameters of this Markov process. Special cases are worked out in detail and numerical examples are given.  相似文献   
9.
A one-pot procedure for the preparation of phosphoramidates, phosphorothioates, pyrophosphates, phosphodiesters, and phosphofluoridates has been devised using di(p-methoxybenzyl)-N,N-diisopropylphosphoramidite as the common phosphitylating reagent.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号