首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   14篇
  国内免费   2篇
化学   147篇
数学   11篇
物理学   27篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   12篇
  2019年   7篇
  2018年   9篇
  2017年   4篇
  2016年   23篇
  2015年   12篇
  2014年   23篇
  2013年   26篇
  2012年   7篇
  2011年   6篇
  2010年   8篇
  2009年   3篇
  2008年   9篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  1993年   1篇
排序方式: 共有185条查询结果,搜索用时 11 毫秒
1.
A nutritional food rich in menaquinone-7 has a potential in preventing osteoporosis and cardiovascular diseases. The static fermentation of Bacillus subtilis natto is widely regarded as an optimum process for menaquinone-7 production. The major issues for the bulk production of menaquinone-7 are the low fermentation yield, biofilm formation and the use of organic solvents for the vitamin extraction. In this study, we demonstrate that the dynamic fermentation involving high stirring and aeration rates enhances the yield of fermentation process significantly compared to static system. The menaquinone-7 concentration of 226 mg/L was produced at 1,000 rpm, 5 vvm, 40 °C after 5 days of fermentation. This concentration is 70-fold higher than commercially available food products such as natto. Additionally, it was found that more than 80 % of menaquinone-7 was recovered in situ in the vegetable oil that was gradually added to the system as an anti-foaming agent. The intensification process developed in this study has a capacity to produce an oil rich in menaquinone-7 in one step and eliminate the use of organic solvents for recovery of this compound. This oil can, therefore, be used for the preparation of broad range of supplementary and dietary food products rich in menaquinone-7 to reduce the risk of osteoporotic fractures and cardiovascular diseases.  相似文献   
2.
Journal of the Iranian Chemical Society - The primary objective of the present work was to investigate the effect of fluid movement on synthesized chromium-benzenedicarboxylate, MIL-101(Cr),...  相似文献   
3.
A glassy carbon electrode (GCE) modified with polymeric nanocomposite consisting of palladium nanoparticles and a conductive polymeric ionic liquid was prepared. The modified GCE was applied to sensitive and fairly selective electrochemical determination of the mycotoxin zearalenone. Electrocatalytic oxidation is performed in a solution containing 20 % (V/V) acetonitrile and 80 % (V/V) of 1 M perchloric acid. Cyclic voltammetry and square wave voltammetry revealed a well-defined electrocatalytic peak current at overpotential of +0.69 V versus Ag/AgCl. Under optimized experimental conditions, there is a linear relationship between anodic peak current and zearalenone concentration in the range from 0.03 to 35 ng?mL ̄1, and the detection limit is 0.01 ng?mL ̄1. The method was successfully applied to the analysis of zearalenone in spiked food samples and gave recoveries between 95.6 and 104.0 %.
Graphical abstract The nanocomposite (PdVC-PIL) was prepared by polymerization of ionic liquid monomer (PIL) in presence of Pd nanoparticles on Vulcan XC-72R carbon (PdVC). The solution containing nanocomposite was placed on the glassy carbon electrode (GCE). The voltammetry activity of modified electrode (PdVC-PIL/GCE) was compared to a bare GCE for zearalenone determination.
  相似文献   
4.
In recent decades, nanotechnology is growing rapidly owing to its widespread application in science and industry. The aim of the experiment was chemical characterization and evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing activities of titanium nanoparticles using aqueous extract of Ziziphora clinopodioides Lam leaves (TiNPs@Ziziphora). These nanoparticles were characterized by fourier transformed infrared spectroscopy (FT‐IR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDS), and UV–visible spectroscopy. The synthesized TiNPs@Ziziphora had great cell viability dose‐dependently (Investigating the effect of the plant on human umbilical vein endothelial cells (HUVECs) cell line) and revealed this method was nontoxic. Then, 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was done to assess the antioxidant properties, which indicated similar antioxidant potentials for TiNPs@Ziziphora and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial and antifungal characteristics. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) were specified by macro‐broth dilution assay. The data were analyzed by SPSS 21 software (Duncan post‐hoc test). TiNPs@Ziziphora indicated higher antibacterial and antifungal effects than all standard antibiotics (p ≤ 0.01). Also, TiNPs@Ziziphora inhibited the growth of all bacteria at 2‐16 mg/ml concentrations and removed them at 2‐32 mg/ml concentrations (p ≤ 0.01). In case of antifungal properties of TiNPs@Ziziphora, they prevented the growth of all fungi at 2‐8 mg/ml concentrations and destroyed them at 2‐16 mg/ml concentrations (p ≤ 0.01). In vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control, treatment with Eucerin basal ointment, treatment with 3% tetracycline ointment, treatment with 0.2% TiO2 ointment, treatment with 0.2% Z. clinopodioides ointment, and treatment with 0.2% TiNPs@Ziziphora ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3 cm section was prepared from all dermal thicknesses at day 10. Use of TiNPs@Ziziphora ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups. In conclusion, the results revealed the useful non‐cytotoxic, antioxidant, antibacterial, antifungal, and cutaneous wound healing effects of TiNPs@Ziziphora.  相似文献   
5.
The ring-opening reaction of epoxides with thiols by SbCl 3 supported on Kieselguhr under solvent-free conditions, afforded high yields of β-hydroxy sulfides. Nucleophilic attack of the thiols occurs regioselectively at the less hindered side of the epoxides.  相似文献   
6.
Syntheses of fused heterobicyclic systems containing 1,2,4‐triazolopyridinone moieties were accomplished by heterocyclization of 1,6‐diamino‐2‐oxo‐4‐phenyl‐1,2‐dihydropyridine‐3,5‐dicarbonitriles and ninhydrin in ethanol and in the presence of boric acid as a catalyst in 30 min at room temperature. All compounds have been screened for their photophysical properties. Results showed that all compounds exhibit near infrared emissions at 876 nm.  相似文献   
7.
An ionic liquid containing copper(I) is introduced as a new, green, homogeneous, and reusable catalyst for click synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from α-azido ketones and terminal alkynes in various solvents, especially in [bmim]BF4. These cyclization reactions were efficiently performed in the presence of introduced ionic liquid catalyst with short reaction times and good yields. This catalytic ionic liquid exhibits excellent activity and can be simply recovered and reused for at least five runs without any loss in its activity.

Supplemental materials are available for this article. Go to the publisher's online edition of Synthetic Communications® to view the free supplemental file.  相似文献   
8.
This research represents a novel detection method of acetone level in the exhaled breath samples (RH=88 %) based on polypyrrole/tungsten oxide (PPy/WO3) nanocomposite sensor. The PPy/WO3 sensor was fabricated by the deposition of nanocomposite on/between interdigitated electrodes (IDEs) through electrospray coating and was then characterized by FE-SEM imaging. In this detection method, the coulometric signal of the sensor was calculated using Fast Fourier Continuous Cyclic Voltammetry (FFTCCV), where cyclic voltammetry (CV) was applied to the sensor in the defined potential rang and then charge changes of the sensor was obtained by integration of the current in all scanned potential ranges. FFTCCV method enhances the sensitivity of the sensor when exposed to the gas mixtures containing acetone. In addition to its fast coulometric response time (≤5 s) in the two linear ranges of 0.7–2.8 ppm and 2.8–28.2 ppm (R2=0.99), FFTCCV method provides the low detection limit of 70 ppb, and high sensitivity toward acetone at the optimum values of the parameters. The fabricated sensor showed great selectivity toward acetone when exposed to humid air and some exhaled gas like carbon dioxide, ammonia, methanol, ethanol and alkyl amines. The results were very satisfying as the sensor was capable to detect different acetone levels in human exhaled breath as non-invasive diagnosis of diabetes with a good correlation (R2≃0.9) to the routine blood sugar test taken by different commercial glucometers results.  相似文献   
9.
In this work, phenol reacted with 4-aminoantipyrine (4-AAP) reagent in presence of potassium hexacyanoferrate(III) and then was extracted using ultrasound-assisted emulsification microextraction via 1-hexyl-3-methyl imidazolium hexafluorophosphate as an environmentally friendly solvent. Effects of the main experimental variables were investigated and optimized by central composite design. Under the optimum conditions (pH 9.5, 100 mg/L 4-AAP, 100 μL of ionic liquid as extraction solvent, 0.2 g/L K3Fe(CN)6 and 0.2 M NH4Cl) the dynamic linear range, limit of detection and relative standard deviation were obtained as 0.2?25 μg/L, 0.07 μg/L and 2.6%, respectively. Finally, the applicability of the proposed ultrasoundassisted emulsification microextraction was examined and very good results were obtained. The results confirmed the applicability of the proposed method as a versatile, low cost and sensitive preconcentration method for determination of very low concentrations of phenol in aqueous solutions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号