首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   20篇
化学   116篇
晶体学   3篇
力学   1篇
数学   4篇
物理学   46篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   4篇
  2019年   11篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   10篇
  2014年   9篇
  2013年   7篇
  2012年   11篇
  2011年   11篇
  2010年   1篇
  2009年   3篇
  2008年   9篇
  2007年   4篇
  2006年   5篇
  2005年   8篇
  2004年   8篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1992年   2篇
  1990年   1篇
  1987年   2篇
  1985年   5篇
  1984年   1篇
  1982年   1篇
  1978年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
1.
2.
Abstract

Polymerizations of methyl methacrylate (MMA) and acrylonitrile (AN) were carried out in aqueous nitric acid at 30°C with the redox initiator system ammonium ceric nitrate-ethyl cellosolve (EC). A short induction period was observed as well as the attainment of a limiting conversion for polymerization reactions. The consumption of ceric ion was first order with respect to Ce(IV) concentration in the concentration range (0.2–0.4) × 10?2 M, and the points at higher and lower concentrations show deviations from a linear fit. The plots of the inverse of pseudo-first-order rate constant for ceric ion consumption, (k 1)?1 vs [EC]?1, gave straight lines for both the monomer systems with nonzero intercepts supporting complex formation between Ce(IV) and EC. The rate of polymerization increases regularly with [Ce(IV)] up to 0.003 M, yielding an order of 0.41, then falls to 0.0055 M and again shows a rise at 0.00645 M for MMA polymerization. For AN polymerization, R p shows a steep rise with [Ce(IV)] up to 0.001 M, and beyond this concentration R p shows a regular increase with [Ce(IV)], yielding an order of 0.48. In the presence of constant [NO? 3], MMA and AN polymerizations yield orders of 0.36 and 0.58 for [Ce(IV)] variation, respectively. The rates of polymerization increased with an increase in EC and monomer concentrations: only at a higher concentration of EC (0.5 M) was a steep fall in R p observed for both monomer systems. The orders with respect to EC and monomer for MMA polymerization were 0.19 and 1.6, respectively. The orders with respect to EC and monomer for AN polymerization were 0.2 and 1.5, respectively. A kinetic scheme involving oxidation of EC by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by biomolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   
3.
The new diimine fluorescent ligand ACRI‐1 based on a central acridine yellow core is reported along with its coordination complex [Co2( ACRI‐1 )2] ( 1 ), a fluorescent weak ferromagnet. Due to the strong fluorescence of the acridine yellow fluorophore, it is not completely quenched when the ligand is coordinated to CoII. The magnetic properties of bulk complex 1 and its stability in solution have been studied. Complex 1 has been deposited on highly ordered pyrolitic graphite (HOGP) from solution. The thin films prepared have been characterized by AFM, time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS), grazing incidence X‐ray diffraction (GIXRD), X‐ray absorption spectroscopy (XAS), X‐ray magnetic circular dichroism (XMCD) and theoretical calculations. The data show that the complex is robust and remains intact on the surface of graphite.  相似文献   
4.
5.
[{Mn(TPA)I}{UO2(Mesaldien)}{Mn(TPA)I}]I formula (here TPA=tris(2-pyridylmethyl)amine and Mesaldien=N,N’-(2-aminomethyl)diethylenebis(salicylidene imine)) reported by Mazzanti and coworkers (Chatelain et al. Angew. Chem. Int. Ed. 2014 , 53, 13434) is so far the best Single Molecule Magnet (SMM) in the {3d–5f} class of molecules exhibiting barrier height of magnetization reversal as high as 81.0 K. In this work, we have employed a combination of ab initio CAS and DFT methods to fully characterize this compound and to extract the relevant spin Hamiltonian parameters. We show that the signs of the magnetic coupling and of the g-factors of the monomers are interconnected. The central magnetic unit [UVO2]+ is described by a Kramers Doublet (KD) with negative g-factors, due to a large orbital contribution. The magnetic coupling for the {Mn(II)-U(V)} pair is modeled by an anisotropic exchange Hamiltonian: all components are ferromagnetic in terms of spin moments, the parallel component JZ twice larger as the perpendicular one J. The spin density distribution suggests that spin polarization on the U(V) center favors the ferromagnetic coupling. Further, the JZ/J ratio, which is related to the barrier height, was found to correlate to the corresponding spin contribution of the g-factors of the U(V) center. This correlation established for the first time offers a direct way to estimate this important ratio from the corresponding gS-values, which can be obtained using traditional ab initio packages and hence has a wider application to other {3d–5f} magnets. It is finally shown that the magnetization barrier height is tuned by the splitting of the [UVO2]+ 5 f orbitals.  相似文献   
6.
We study randomized gossip‐based processes in dynamic networks that are motivated by information discovery in large‐scale distributed networks such as peer‐to‐peer and social networks. A well‐studied problem in peer‐to‐peer networks is resource discovery, where the goal for nodes (hosts with IP addresses) is to discover the IP addresses of all other hosts. Also, some of the recent work on self‐stabilization algorithms for P2P/overlay networks proceed via discovery of the complete network. In social networks, nodes (people) discover new nodes through exchanging contacts with their neighbors (friends). In both cases the discovery of new nodes changes the underlying network — new edges are added to the network — and the process continues in the changed network. Rigorously analyzing such dynamic (stochastic) processes in a continuously changing topology remains a challenging problem with obvious applications. This paper studies and analyzes two natural gossip‐based discovery processes. In the push discovery or triangulation process, each node repeatedly chooses two random neighbors and connects them (i.e., “pushes” their mutual information to each other). In the pull discovery process or the two‐hop walk, each node repeatedly requests or “pulls” a random contact from a random neighbor and connects itself to this two‐hop neighbor. Both processes are lightweight in the sense that the amortized work done per node is constant per round, local, and naturally robust due to the inherent randomized nature of gossip. Our main result is an almost‐tight analysis of the time taken for these two randomized processes to converge. We show that in any undirected n‐node graph both processes take rounds to connect every node to all other nodes with high probability, whereas is a lower bound. We also study the two‐hop walk in directed graphs, and show that it takes time with high probability, and that the worst‐case bound is tight for arbitrary directed graphs, whereas Ω(n2) is a lower bound for strongly connected directed graphs. A key technical challenge that we overcome in our work is the analysis of a randomized process that itself results in a constantly changing network leading to complicated dependencies in every round. We discuss implications of our results and their analysis to discovery problems in P2P networks as well as to evolution in social networks. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 48, 565–587, 2016  相似文献   
7.
The dissolution behavior of carbon steel in ammonium chloride (NH4Cl) solution containing sodium thiosulfate (Na2S2O3) of various concentrations (0.01 and 0.1 M) was investigated using electrochemical impedance spectroscopy (EIS) and other nonelectrochemical techniques. The weight loss and polarization measurements indicate a significant increase in the NH4Cl corrosion rate of carbon steel on addition of Na2S2O3. The EIS measurements exhibited two capacitive loops at multiple direct current (dc) potentials for both the concentrations. Electrical equivalent circuit (EEC) and reaction mechanism analysis (RMA) were employed to analyze the impedance data. A four-step mechanism with two intermediate adsorbate species of same charge was proposed to explain the dissolution behavior of carbon steel in the given system. The surface coverage values enumerated that the surface was entirely covered with adsorbed species unlike in the pure NH4Cl system. Charge transfer resistance and polarization resistance values estimated from RMA parameters indicate the increase in a dissolution rate with dc potential. The surface morphology was inspected via field emission scanning electron microscopy, and the corrosion products including surface state of carbon steel electrode were analyzed using energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy.  相似文献   
8.
Detailed ab initio calculations were performed on two structurally different cerium(III) single‐molecule magnets (SMMs) to probe the origin of magnetic anisotropy and to understand the mechanism of magnetic relaxations. The complexes [CeIII{ZnII(L)}2(MeOH)]BPh4 ( 1 ) and [Li(dme)3][CeIII(cot′′)2] ( 1 ; L=N,N,O,O‐tetradentate Schiff base ligand; 2 ; DME=dimethoxyethane, COT′′=1,4‐bis(trimethylsilyl)cyclooctatetraenyldianion), which are reported to be zero‐field and field‐induced SMMs with effective barrier heights of 21.2 and 30 K respectively, were chosen as examples. CASSCF+RASSI/SINGLE_ANISO calculations unequivocally suggest that mJ|±5/2〉 and |±1/2〉 are the ground states for complexes 1 and 2 , respectively. The origin of these differences is rooted back to the nature of the ligand field and the symmetry around the cerium(III) ions. Ab initio magnetisation blockade barriers constructed for complexes 1 and 2 expose a contrasting energy‐level pattern with significant quantum tunnelling of magnetisation between the ground state Kramers doublet in complex 2 . Calculations performed on several model complexes stress the need for a suitable ligand environment and high symmetry around the cerium(III) ions to obtain a large effective barrier.  相似文献   
9.
Theoretical calculations using density functional methods have been performed on two dinuclear {Ni(II)-Gd(III)} and two trinuclear {Ni(II)-Gd(III)-Ni(II)} complexes having two and three μ-OR (R = alkyl or aromatic groups) bridging groups. The different magnetic behaviour, having moderately strong ferromagnetic coupling for complexes having two μ-OR groups and weak ferromagnetic coupling for complexes having three μ-OR groups, observed experimentally is very well reproduced by the calculations. Additionally, computation of overlap integrals MO and NBO analysis reveals a clear increase in antiferromagnetic contribution to the net exchange for three μ-OR bridged {Ni-Gd} dimers and also provides several important clues regarding the mechanism of magnetic coupling. Besides, MO and NBO analysis discloses the role of the empty 5d orbitals of the Gd(III) ion on the mechanism of magnetic coupling. Magneto-structural correlations for Ni-O-Gd bond angles, Ni-O and Gd-O bond distances, and the Ni-O-Gd-O dihedral angle have been developed and compared with the published experimental {Ni-Gd} structures and their J values indicate that the Ni-O-Gd bond angles play a prominent role in these types of complexes. The computation has then been extended to two trinuclear {Ni(II)-Gd(III)-Ni(II)} complexes and here both the {Ni-Gd} and the {Ni-Ni} interactions have been computed. Our calculations reveal that, for both structures studied, the two {NiGd} interactions are ferromagnetic and are similar in strength. The {Ni-Ni} interaction is antiferromagnetic in nature and our study reveals that its inclusion in fitting the magnetic data is necessary to obtain a reliable set of spin Hamiltonian parameters. Extensive magneto-structural correlations have been developed for the trinuclear complexes and the observed J trend for the trinuclear complex is similar to that of the dinuclear {Ni-Gd} complex. In addition to the structural parameters discussed above, for trinuclear complexes the twist angle between the two Ni-O-Gd planes is also an important parameter which influences the J values.  相似文献   
10.
Phenolic oxime and diethanolamine moieties have been combined into one organic framework, resulting in the formation of a novel ligand type that can be employed to construct a rare and unusual dodecametallic Mn wheel, within which nearest neighbours are coupled ferromagnetically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号