全文获取类型
收费全文 | 179篇 |
免费 | 6篇 |
专业分类
化学 | 176篇 |
物理学 | 9篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 4篇 |
2020年 | 6篇 |
2019年 | 3篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 4篇 |
2013年 | 2篇 |
2012年 | 20篇 |
2011年 | 23篇 |
2010年 | 8篇 |
2009年 | 5篇 |
2008年 | 11篇 |
2007年 | 17篇 |
2006年 | 18篇 |
2005年 | 18篇 |
2004年 | 9篇 |
2003年 | 8篇 |
2002年 | 7篇 |
2001年 | 1篇 |
1999年 | 1篇 |
1995年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1971年 | 1篇 |
1938年 | 1篇 |
排序方式: 共有185条查询结果,搜索用时 7 毫秒
1.
2.
Ames W Pantazis DA Krewald V Cox N Messinger J Lubitz W Neese F 《Journal of the American Chemical Society》2011,133(49):19743-19757
Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S(n) (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S(2) state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 ? resolution was used and refined to obtain the optimum structure for the Mn(4)O(5)Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn(A)) of the cluster is deprotonated in the S(2) state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca(2+)-bound water molecules is strongly disfavored in the S(2) state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn(III). The present results impose limits for the total charge and the proton configuration of the OEC in the S(2) state, with implications for the cascade of events in the Kok cycle and for the water splitting mechanism. 相似文献
3.
On the Reaction Mechanism of the Complete Intermolecular O2 Transfer between Mononuclear Nickel and Manganese Complexes with Macrocyclic Ligands 下载免费PDF全文
Dr. Jhon Zapata‐Rivera Prof. Rosa Caballol Dr. Carmen J. Calzado Dr. Dimitrios G. Liakos Prof. Frank Neese 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(41):13296-13304
The recently described intermolecular O2 transfer between the side‐on Ni‐O2 complex [(12‐TMC)Ni‐O2]+ and the manganese complex [(14‐TMC)Mn]2+, where 12‐TMC and 14‐TMC are 12‐ and 14‐membered macrocyclic ligands, 12‐TMC=1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane and 14‐TMC=1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane, is studied by means of DFT methods. B3LYP calculations including long‐range corrections and solvent effects are performed to elucidate the mechanism. The potential energy surfaces (PESs) compatible with different electronic states of the reactants have been analyzed. The calculations confirm a two‐step reaction, with a first rate‐determining bimolecular step and predict the exothermic character of the global process. The relative stability of the products and the reverse barrier are in line with the fact that no reverse reaction is experimentally observed. An intermediate with a μ‐η1:η1‐O2 coordination and two transition states are identified on the triplet PES, slightly below the corresponding stationary points of the quintet PES, suggesting an intersystem crossing before the first transition state. The calculated activation parameters and the relative energies of the two transition sates and the products are in very good agreement with the experimental data. The calculations suggest that a superoxide anion is transferred during the reaction. 相似文献
4.
Dr. Christiane Stoll Prof. Dr. Mihail Atanasov Jascha Bandemehr Prof. Dr. Frank Neese Clemens Pietzonka Prof. Dr. Florian Kraus Prof. Dr. Antti J. Karttunen Dr. Markus Seibald Assoc. Prof. Dr. Gunter Heymann Prof. Dr. Hubert Huppertz 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(38):9801-9813
As a consequence of the static Jahn-Teller effect of the 5E ground state of MnIII in cubic structures with octahedral parent geometries, their octahedral coordination spheres become distorted. In the case of six fluorido ligands, [MnF6]3− anions with two longer and four shorter Mn−F bonds making elongated octahedra are usually observed. Herein, we report the synthesis of the compound K3[MnF6] through a high-temperature approach and its crystallization by a high-pressure/high-temperature route. The main structural motifs are two quasi-isolated, octahedron-like [MnF6]3− anions of quite different nature compared to that met in ideal octahedral MnIII Jahn-Teller systems. Owing to the internal electric field of Ci symmetry dominated by the next-neighbour K+ ions acting on the MnIII sites, both sites, the pseudo-rhombic (site 1) and the pseudo-tetragonally elongated (site 2) [MnF6]3− anions are present in K3[MnF6]. The compound was characterized by single-crystal and powder X-ray diffraction, and magnetometry as well as by FTIR, Raman, and ligand field spectroscopy. A theoretical interpretation of the electronic structure and molecular geometry of the two Mn sites in the lattice is given by using a vibronic coupling model with parameters adjusted from multireference ab-initio cluster calculations. 相似文献
5.
Bill E Bothe E Chaudhuri P Chlopek K Herebian D Kokatam S Ray K Weyhermüller T Neese F Wieghardt K 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,11(1):204-224
The bidentate ligands N-phenyl-o-phenylenediamine, H(2)((2)L(N)IP), or its analogue 2-(2-trifluoromethyl)anilino-4,6-di-tert-butylphenol, ((4)L(N)IP), react with [Co(II)(CH(3)CO(2))(2)]4H(2)O and triethylamine in acetonitrile in the presence of air yielding the square-planar, four-coordinate species [Co((2)L(N))(2)] (1) and [Co((4)L(O))(2)] (4) with an S=1/2 ground state. The corresponding nickel complexes [Ni((4)L(O))(2)] (8) and its cobaltocene reduced form [Co(III)(Cp)(2)][Ni((4)L(O))(2)] (9) have also been synthesized. The five-coordinate species [Co((2)L(N))(2)(tBu-py)] (2) (S=1/2) and its one-electron oxidized forms [Co((2)L(N))(2)(tBu-py)](O(2)CCH(3)) (2 a) or [Co((2)L(N))(2)I] (3) with diamagnetic ground states (S=0) have been prepared, as has the species [Co((4)L(O))(2)(CH(2)CN)] (7). The one-electron reduced form of 4, namely [Co(Cp)(2)][Co((4)L(O))(2)] (5) has been generated through the reduction of 4 with [Co(Cp)(2)]. Complexes 1, 2, 2 a, 3, 4, 5, 7, 8, and 9 have been characterized by X-ray crystallography (100 K). The ligands are non-innocent and may exist as catecholate-like dianions ((2)L(N)IP)(2-), ((4)L(N)IP)(2-) or pi-radical semiquinonate monoanions ((2)L(N)ISQ)(*) (-), ((4)L(N)ISQ)(*) (-) or as neutral benzoquinones ((2) L(N)IBQ)(0), ((4) L(N)IBQ)(0); the spectroscopic oxidation states of the central metal ions vary accordingly. Electronic absorption, magnetic circular dichroism, and EPR spectroscopy, as well as variable temperature magnetic susceptibility measurements have been used to experimentally determine the electronic structures of these complexes. Density functional theoretical (DFT) and correlated ab initio calculation have been performed on the neutral and monoanionic species [Co((1)L(N))(2)](0,-) in order to understand the structural and spectroscopic properties of complexes. It is shown that the corresponding nickel complexes 8 and 9 contain a low-spin nickel(II) ion regardless of the oxidation level of the ligand, whereas for the corresponding cobalt complexes the situation is more complicated. Spectroscopic oxidation states describing a d(6) (Co(III)) or d(7) (Co(II)) electron configuration cannot be unambiguously assigned. 相似文献
6.
M. Sc. Benjamin Scheibe Clemens Pietzonka M. Sc. Otto Mustonen Prof. Dr. Maarit Karppinen Prof. Dr. Antti J. Karttunen Prof. Dr. Mihail Atanasov Prof. Dr. Frank Neese Dr. Matthias Conrad Prof. Dr. Florian Kraus 《Angewandte Chemie (International ed. in English)》2018,57(11):2914-2918
The D2h‐symmetric dinuclear complex anion [U2F12]2? of pastel green Sr[U2F12] shows a hitherto unknown structural feature: The coordination polyhedra around the U atoms are edge‐linked monocapped trigonal prisms, the UV atoms are therefore seven‐coordinated. This leads to a U–U distance of 3.8913(6) Å. A weak UV–UV interaction is observed for the dinuclear [U2F12]2? complex and described by the antiferromagnetic exchange Jexp of circa ?29.9 cm?1. The crystalline compound can be easily prepared from SrF2 and β‐UF5 in anhydrous hydrogen fluoride (aHF) at room temperature. It was studied by means of single crystal X‐ray diffraction, IR, Raman and UV/VIS spectroscopy, magnetic measurements, and by molecular as well as by solid‐state quantum chemical calculations. 相似文献
7.
Octav Caldararu Martin A. Olsson Christoph Riplinger Frank Neese Ulf Ryde 《Journal of computer-aided molecular design》2017,31(1):87-106
We have tried to calculate the free energy for the binding of six small ligands to two variants of the octa-acid deep cavitand host in the SAMPL5 blind challenge. We employed structures minimised with dispersion-corrected density-functional theory with small basis sets and energies were calculated using large basis sets. Solvation energies were calculated with continuum methods and thermostatistical corrections were obtained from frequencies calculated at the HF-3c level. Care was taken to minimise the effects of the flexibility of the host by keeping the complexes as symmetric and similar as possible. In some calculations, the large net charge of the host was reduced by removing the propionate and benzoate groups. In addition, the effect of a restricted molecular dynamics sampling of structures was tested. Finally, we tried to improve the energies by using the DLPNO–CCSD(T) approach. Unfortunately, results of quite poor quality were obtained, with no correlation to the experimental data, systematically too positive affinities (by ~50 kJ/mol) and a mean absolute error (after removal of the systematic error) of 11–16 kJ/mol. DLPNO–CCSD(T) did not improve the results, so the accuracy is not limited by the energy function. Instead, four likely sources of errors were identified: first, the minimised structures were often incorrect, owing to the omission of explicit solvent. They could be partly improved by performing the minimisations in a continuum solvent with four water molecules around the charged groups of the ligands. Second, some ligands could bind in several different conformations, requiring sampling of reasonable structures. Third, there is an indication the continuum-solvation model has problems to accurately describe the binding of both the negatively and positively charged guest molecules. Fourth, different methods to calculate the thermostatistical corrections gave results that differed by up to 30 kJ/mol and there is an indication that HF-3c overestimates the entropy term. In conclusion, it is a challenge to calculate binding affinities for this octa-acid system with quantum–mechanical methods. 相似文献
8.
The multicopper oxidases (MCOs) couple the four-electron reduction of dioxygen to water with four one-electron oxidations of various substrates. Extensive spectroscopic studies have identified several intermediates in the MCO catalytic cycle, but they have not been able to settle the structures of three of the intermediates, viz. the native intermediate (NI), the peroxy intermediate (PI), and the peroxy adduct (PA). The suggested structures have been further refined and characterized by quantum mechanical/molecular mechanical (QM/MM) calculations. In this paper, we try to establish a direct link between theory and experiment, by calculating spectroscopic parameters for these intermediates using multireference wave functions from the multistate CASPT2 and MRDDCI2 methods. Thereby, we have been able to reproduce low-spin ground states (S = 0 or S = 1/2) for all the MCO intermediates, as well as a low-lying (approximately 150 cm-1) doublet state and a doublet-quartet energy gap of approximately 780 cm-1 for the NI. Moreover, we reproduce the zero-field splitting (approximately 70 cm-1) of the ground 2E state in a D3 symmetric hydroxy-bridged trinuclear Cu(II) model of the NI and obtain a quantitatively correct quartet-doublet splitting (164 cm-1) for a mu3-oxo-bridged trinuclear Cu(II) cluster. All results support the suggestion that the NI has an O2- atom in the center of the trinuclear cluster, whereas both the PI and PA have an O22- ion in the center of the cluster, in agreement with the QM/MM results and spectroscopic measurements. 相似文献
9.
The electric g-tensor is a central quantity for the interpretation of electron paramagnetic resonance spectra. In this paper, a detailed derivation of the 1-electron contributions to the g-tensor is presented in the framework of linear response theory and the second-order Douglas-Kroll-Hess (DKH) transformation. Importantly, the DKH transformation in the presence of a magnetic field is not unique. Whether or not the magnetic field is included in the required Foldy-Wouthuysen transformation, different transformation matrices and, consequently, Hamiltonians result. In this paper, a detailed comparison of both approaches is presented, paying particular attention to the mathematical properties of the resulting Hamiltonians. In contrast to previous studies that address the g-tensor in the framework of DKH theory, the resulting terms are compared to those of the conventional Pauli theory and are given a physical interpretation. Based on these mathematical and physical arguments, we establish that the proper DKH transformation for systems with constant magnetic fields is based on a gauge-invariant Foldy-Wouthuysen transformation, i.e., a Foldy-Wouthuysen transformation including the magnetic field. Calculations using density functional theory (DFT) are carried out on a set of heavy, diatomic molecules, and a set of transition-metal complexes. Based on these calculations, the performance of the relativistic calculation with and without inclusion of picture-change effects is compared. Additionally, the g-tensor is calculated for the Lanthanide dihydrides. Together with the results from the other two molecular test sets, these calculations serve to quantify the magnitude of picture-change effects and elucidate trends across the periodic table. 相似文献
10.
Density functional theory and complete active space self-consistent field computations are applied to elucidate the singlet diradical character of square planar, diamagnetic nickel complexes that contain two bidentate ligands derived from o-catecholates, o-phenylenediamines, o-benzodithiolates, o-aminophenolates, and o-aminothiophenolates. In the density functional framework, the singlet diradical character is discussed within the broken symmetry formalism. The singlet-triplet energy gaps, the energy gained from symmetry breaking, the spin distribution in the lowest triplet state, and the form of the magnetic orbitals are applied as indicators for the singlet diradical character. Moreover, a new index for the diradical character is proposed that is based on symmetry breaking. All symmetry breaking criteria show that the complexes obtained from o-catecholates and o-benzodithiolates have the largest and the smallest singlet diradical character, respectively. The singlet diradical character should be intermediate for the complexes derived from o-phenylenediamines, o-aminophenolates, and o-aminothiophenolates. The diradical character of all complexes suggests the presence of Ni(II) central atoms. This is also indicated by the d-populations computed by means of the natural population analysis. 相似文献