首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   1篇
化学   42篇
物理学   1篇
  2023年   5篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   6篇
  2018年   3篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  1998年   1篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
1.
A generic method for the synthesis of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) charge-transfer complexes on both conducting and nonconducting substrates is achieved by photoexcitation of TCNQ in acetonitrile in the presence of a sacrificial electron donor and the relevant metal cation. The photochemical reaction leads to reduction of TCNQ to the TCNQ(-) monoanion. In the presence of M(x+)(MeCN), reaction with TCNQ(-)(MeCN) leads to deposition of M(x+)[TCNQ]x crystals onto a solid substrate with morphologies that are dependent on the metal cation. Thus, CuTCNQ phase I photocrystallizes as uniform microrods, KTCNQ as microrods with a random size distribution, AgTCNQ as very long nanowires up to 30 mum in length and with diameters of less than 180 nm, and Co[TCNQ](2)(H(2)O)(2) as nanorods and wires. The described charge-transfer complexes have been characterized by optical and scanning electron microscopy and IR and Raman spectroscopy. The CuTCNQ and AgTCNQ complexes are of particular interest for use in memory storage and switching devices. In principle, this simple technique can be employed to generate all classes of metal-TCNQ complexes and opens up the possibility to pattern them in a controlled manner on any type of substrate.  相似文献   
2.
The reaction of [Fe(II)(BF(4))(2)]·6H(2)O with the nitroxide radical, 4,4-dimethyl-2,2-di(2-pyridyl) oxazolidine-N-oxide (L(?)), produces the mononuclear transition metal complex [Fe(II)(L(?))(2)](BF(4))(2) (1) which has been investigated using temperature dependent susceptibility, Mo?ssbauer spectroscopy, electrochemistry, density functional theory (DFT) calculations, and X-ray structure analysis. Single crystal X-ray diffraction analysis and Mo?ssbauer measurements reveal an octahedral low spin Fe(2+) environment where the pyridyl donors from L(?) coordinate equatorially while the oxygen containing the radical from L(?) coordinates axially forming a linear O(?)··Fe(II)··O(?) arrangement. Magnetic susceptibility measurements show a strong radical-radical intramolecular antiferromagnetic interaction mediated by the diamagnetic Fe(2+) center. This is supported by DFT calculations which show a mutual spatial overlap of 0.24 and a spin density population analysis which highlights the antiparallel spin alignment between the two ligands. Similarly the monocationic complex [Fe(III)(L(-))(2)](BPh(4))·0.5H(2)O (2) has been fully characterized with Fe-ligand and N-O bond length changes in the X-ray structure analysis, magnetic measurements revealing a Curie-like S = 1/2 ground state, electron paramagnetic resonance (EPR) spectra, DFT calculations, and electrochemistry measurements all consistent with assignment of Fe in the (III) state and both ligands in the L(-) form. 2 is formed by a rare, reductively induced oxidation of the Fe center, and all physical data are self-consistent. The electrochemical studies were undertaken for both 1 and 2, thus allowing common Fe-ligand redox intermediates to be identified and the results interpreted in terms of square reaction schemes.  相似文献   
3.
Facile synthesis and characterization of the highly conducting, thermodynamically favored, Tl(TCNQ) phase II microrods/nanorods onto conducting (glassy carbon (GC)) and semiconducting (indium tin oxide (ITO)) surfaces have been accomplished via redox-based transformation of 7,7,8,8-tetracynoquinodimethane (TCNQ) microcrystals. This electrochemically irreversible process involves the one-electron reduction of surface-confined solid TCNQ into TCNQ·? with concomitant incorporation of the Tl+ (aq) cation, from the bulk solution, at the triple-phase boundary, GC or ITO│(TCNQ(s)/TCNQ·? (s))│Tl+ (aq), through a nucleation/growth mechanism. Consistent with the conceptually related M(TCNQ) systems (M+ = Li+, Na+, K+, Ag+, and Cu+), the TCNQ/Tl(TCNQ) interconversion is strongly dependent upon scan rate, Tl+ (aq) electrolyte concentration, and the method of attaching solid TCNQ onto the electrode surface. Spectroscopic (infrared (IR) and Raman), microscopic (scanning electron microscopy (SEM)), and surface science (X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD)) characterization of the electrochemically synthesized material revealed formation of pure Tl(TCNQ) phase II. Importantly, the generic solid-state electrochemical approach used in this study not only offers facile protocol for controllable and preferential synthesis of Tl(TCNQ) phase II but also provides access to fabricate and tune the morphology to yield microrod/nanorod networks.
Graphical abstract Controlled synthesis of the highly conducting Tl(TCNQ) phase II with either nanowire or rod-like morphologies is achieved via a redox-based solid-solid phase interconversion of TCNQ microcrystals in the presence of a Tl+ (aq) electrolyte.
  相似文献   
4.
Journal of Solid State Electrochemistry - Bimetallic nanoparticles (BMNPs) have received considerable attention due to their distinctive properties when compared to the corresponding monometallic...  相似文献   
5.
A new prenylated xanthone, mangostanaxanthone VIII (7) and six known metabolites: gartanin (1), 1,3,8-trihydroxy-2-(3-methyl-2-butenyl)-4-(3-hydroxy-3-methylbutanoyl)-xanthone (2), rubraxanthone (3), 1,3,6,7-tetrahydroxy-8-prenylxanthone (4), garcinone C (5), and xanthone I (9-hydroxycalabaxanthone) (6) were separated from the EtOAc-soluble fraction of the air-dried pericarps of Garcinia mangostana (Clusiaceae). Their structures have been verified on the basis of spectroscopic data analysis as well as comparison with the literature. The cytotoxic activity of 7 was assessed against MCF7, A549, and HCT116 cell lines using sulforhodamine B (SRB) assay. Compound 7 showed significant cytotoxic potential against MCF7 and A549 cell lines with IC50s 3.01 and 1.96 μM, respectively compared to doxorubicin (0.06 and 0.44 μM, respectively). However, it exhibited moderate activity towards HCT116 cell line.  相似文献   
6.
The heterojunction composed of covalent organic frameworks(COFs) with adjustable structure and other photocatalysts has great potential in the field of photocatalysis. However, effectively enhancing the photocatalytic performance of organic heterojunctions by designing the structure of COFs has not been explored. Herein, TPB-TP-COFs fabricated from 1,3,5-tris(4-amino-phenyl)benzene(TPB) and terephthalaldehyde(TP) with different substituents(-H,-OH,-OCH3,-Br and-F groups),were applied ...  相似文献   
7.
This study describes sensitive determination of atropine using glassy carbon electrodes (GCE) modified with Co3O4 nanostructures. The as-synthesised nanostructures were grown using cysteine (CYS), glutathione (GSH) and histidine (HYS) as effective templates under hydrothermal action. The obtained morphologies revealed interesting structural features, including both cavity-based and flower-shaped structures. The as-synthesised morphologies were noted to actively participate in electro-catalysis of atropine (AT) drug where GSH-assisted structures exhibited the best signal response in terms of current density and over-potential value. The study also discusses the influence of functional groups on the signal sensitivity of atropine electro-oxidation. The functionalisation was carried with the amino acids originally used as effective templates for the growth of Co3O4 nanostructures. The highest increment was obtained when GSH was used as the surface functionalising agent. The GSH-functionalised Co3O4-modified electrode was utilised for the electro-chemical sensing of AT in a concentration range of 0.01–0.46 μM. The developed sensor exhibited excellent working linearity (R2 = 0.999) and signal sensitivity up to 0.001 μM of AT. The noted high sensitivity of the sensor is associated with the synergy of superb surface architectures and favourable interaction facilitating the electron transfer kinetics for the electro-catalytic oxidation of AT. Significantly, the developed sensor demonstrated excellent working capability when used for AT detection in human urine samples with strong anti-interference potential against common co-existing species, such as glucose, fructose, cysteine, uric acid, dopamine and ascorbic acid.  相似文献   
8.
Two novel long-chain alkanoic acid esters of lupeol from alecrim-propolis   总被引:2,自引:0,他引:2  
Two new long-chain alkanoic acid esters of lupeol were isolated together with known triterpenoids, alpha-amyrin, beta-amyrin, cycloartenol, lanosta-7,24-diene-3beta-ol and lupeol from Alecrim-propolis collected in Brazil. The structures were characterized by spectroscopic means.  相似文献   
9.
Chemical investigation of the total extract of the Egyptian soft coral Heteroxenia fuscescens, led to the isolation of eight compounds, including two new metabolites, sesquiterpene fusceterpene A (1) and a sterol fuscesterol A (4), along with six known compounds. The structures of 1–8 were elucidated via intensive studies of their 1D, 2D-NMR, and HR-MS analyses, as well as a comparison of their spectral data with those mentioned in the literature. Subsequent comprehensive in-silico-based investigations against almost all viral proteins, including those of the new variants, e.g., Omicron, revealed the most probable target for these isolated compounds, which was found to be Mpro. Additionally, the dynamic modes of interaction of the putatively active compounds were highlighted, depending on 50-ns-long MDS. In conclusion, the structural information provided in the current investigation highlights the antiviral potential of H. fuscescens metabolites with 3β,5α,6β-trihydroxy steroids with different nuclei against SARS-CoV-2, including newly widespread variants.  相似文献   
10.
Electrocrystallization of single nanowires and/or crystalline thin films of the semiconducting and magnetic Co[TCNQ]2(H2O)2 (TCNQ=tetracyanoquinodimethane) charge-transfer complex onto glassy carbon, indium tin oxide, or metallic electrodes occurs when TCNQ is reduced in acetonitrile (0.1 M [NBu4][ClO4]) in the presence of hydrated cobalt(II) salts. The morphology of the deposited solid is potential dependent. Other factors influencing the electrocrystallization process include deposition time, concentration, and identity of the Co2+(MeCN) counteranion. Mechanistic details have been elucidated by use of cyclic voltammetry, chronoamperometry, electrochemical quartz crystal microbalance, and galvanostatic methods together with spectroscopic and microscopic techniques. The results provide direct evidence that electrocrystallization takes place through two distinctly different, potential-dependent mechanisms, with progressive nucleation and 3-D growth being controlled by the generation of [TCNQ]*- at the electrode and the diffusion of Co2+(MeCN) from the bulk solution. Images obtained by scanning electron microscopy reveal that electrocrystallization of Co[TCNQ]2(H2O)2 at potentials in the range of 0.1-0 V vs Ag/AgCl, corresponding to the [TCNQ]0/*- diffusion-controlled regime, gives rise to arrays of well-separated, needle-shaped nanowires via the overall reaction 2[TCNQ]*-(MeCN)+Co2+(MeCN)+2H2O right harpoon over left harpoon {Co[TCNQ]2(H2O)2}(s). In this potential region, nucleation and growth occur at randomly separated defect sites on the electrode surface. In contrast, at more negative potentials, a compact film of densely packed, uniformly oriented, hexagonal-shaped nanorods is formed. This is achieved at a substantially increased number of nucleation sites created by direct reduction of a thin film of what is proposed to be cobalt-stabilized {(Co2+)([TCNQ2]*-)2} dimeric anion. Despite the potential-dependent morphology of the electrocrystallized Co[TCNQ]2(H2O)2 and the markedly different nucleation-growth mechanisms, IR, Raman, elemental, and thermogravimetric analyses, together with X-ray diffraction, all confirmed the formation of a highly pure and crystalline phase of Co[TCNQ]2(H2O)2 on the electrode surface. Thus, differences in the electrodeposited material are confined to morphology and not to phase or composition differences. This study highlights the importance of the electrocrystallization approach in constructing and precisely controlling the morphology and stoichiometry of Co[TCNQ]2-based materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号