首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   14篇
化学   157篇
晶体学   1篇
力学   10篇
数学   26篇
物理学   66篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   9篇
  2014年   9篇
  2013年   7篇
  2012年   15篇
  2011年   20篇
  2010年   6篇
  2009年   14篇
  2008年   18篇
  2007年   22篇
  2006年   19篇
  2005年   14篇
  2004年   14篇
  2003年   11篇
  2002年   9篇
  2001年   9篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1973年   2篇
  1969年   1篇
  1957年   1篇
  1956年   1篇
排序方式: 共有260条查询结果,搜索用时 15 毫秒
1.
Room-temperature time-resolved luminescence measurements on single CdSe/ZnS quantum dots (QDs) are presented. Fluorescence emission spectra were recorded over periods of up to 30 minutes with a time resolution as small as 6 ms. For QDs in ambient air, a clear 30–40 nm blue shift in the emission wavelength is observed, before the luminescence stops after about 2–3 minutes because of photobleaching. In a nitrogen atmosphere, the blue shift is absent while photobleaching occurs after much longer times (i.e., 10–15 minutes). These observations are explained by photoinduced oxidation. The CdSe surface is oxidized during illumination in the presence of oxygen. This effectively results in shrinkage of the CdSe core diameter by almost 1 nm and consequently in a blue shift. The faster fading of the luminescence in air suggests that photoinduced oxidation results in the formation of non-radiative recombination centers at the CdSe/CdSeOx interface. In a nitrogen atmosphere, photoinduced oxidation is prevented by the absence of oxygen. Additionally, a higher initial light output for CdSe/ZnS QDs in air is observed. This can be explained by a fast reduction of the lifetime of the long-lived defect states of CdSe QDs by oxygen.  相似文献   
2.
Degenerate band edges (DBEs) of a photonic bandgap have the form (ω-ω(D)) ∝k(2m) for integers m>1, with ω(D) the frequency at the band edge. We show theoretically that DBEs lead to efficient coupling into slow-light modes without a transition region, and that the field strength in the slow mode can far exceed that in the incoming medium. A method is proposed to create a DBE of arbitrary order m by coupling m optical modes with multiple superimposed gratings. The enhanced coupling near a DBE occurs because of the presence of one or more evanescent modes, which are absent at conventional quadratic band edges. We furthermore show that the coupling can be increased or suppressed by varying the number of excited evanescent waves.  相似文献   
3.
A decade ago, Isham and Butterfield proposed a topos-theoretic approach to quantum mechanics, which meanwhile has been extended by Döring and Isham so as to provide a new mathematical foundation for all of physics. Last year, three of the present authors redeveloped and refined these ideas by combining the C*-algebraic approach to quantum theory with the so-called internal language of topos theory (Heunen et al. in arXiv:0709.4364). The goal of the present paper is to illustrate our abstract setup through the concrete example of the C*-algebra M n (?) of complex n×n matrices. This leads to an explicit expression for the pointfree quantum phase space Σ n and the associated logical structure and Gelfand transform of an n-level system. We also determine the pertinent non-probabilisitic state-proposition pairing (or valuation) and give a very natural topos-theoretic reformulation of the Kochen–Specker Theorem.In our approach, the nondistributive lattice ?(M n (?)) of projections in M n (?) (which forms the basis of the traditional quantum logic of Birkhoff and von Neumann) is replaced by a specific distributive lattice \(\mathcal{O}(\Sigma_{n})\) of functions from the poset \(\mathcal{C}(M_{n}(\mathbb{C}))\) of all unital commutative C*-subalgebras C of M n (?) to ?(M n (?)). The lattice \(\mathcal{O}(\Sigma_{n})\) is essentially the (pointfree) topology of the quantum phase space Σ n , and as such defines a Heyting algebra. Each element of \(\mathcal{O}(\Sigma_{n})\) corresponds to a “Bohrified” proposition, in the sense that to each classical context \(C\in\mathcal{C}(M_{n}(\mathbb{C}))\) it associates a yes-no question (i.e. an element of the Boolean lattice ?(C) of projections in C), rather than being a single projection as in standard quantum logic. Distributivity is recovered at the expense of the law of the excluded middle (Tertium Non Datur), whose demise is in our opinion to be welcomed, not just in intuitionistic logic in the spirit of Brouwer, but also in quantum logic in the spirit of von Neumann.  相似文献   
4.
Fluorescence lifetime imaging of oxygen in living cells   总被引:1,自引:0,他引:1  
The usefulness of the fluorescent probe ruthenium tris(2,2′-dipyridyl) dichloride hydrate (RTDP) for the quantitative imaging of oxygen in single cells was investigated utilizing fluorescence lifetime imaging. The results indicate that the fluorescence behavior of RTDP in the presence of oxygen can be described by the Stem-Volmer equation. This shows that fluorescence quenching by oxygen is a dynamic quenching process. In addition, it was demonstrated that the fluorescence lifetime of RTDP is insensitive to pH, ion concentration, and cellular contents. This implies that a simple calibration procedure in buffers can be used to quantify oxygen concentrations within cells. First fluorescence imaging experiments on J774 macrophages show a nonuniform fluorescence intensity and a uniform fluorescence lifetime image. This indicates that the RTDP is heterogeneously partitioned throughout the cells, while the oxygen concentration is constant.  相似文献   
5.
Hollow-core microstructured polymer optical fiber   总被引:3,自引:0,他引:3  
We have fabricated microstructured polymer optical fibers that guide light in a hollow core using the photonic bandgap mechanism. The hollow core allows the use of polymer fibers to be extended to wavelength ranges where material absorption typically prohibits their use, with attenuation lower than the material loss observed in the infrared. The fabrication method is similar to other microstructured polymer optical fibers, which has favorable implications for the feasibility of manufacturing such bandgap fibers.  相似文献   
6.
Electron Stimulated Desorption (ESD) of O+ ions from oxygen-covered Ni(100) has been investigated at 390 K and 500 eV primary energy. The ion energy distribution is found to peak at 7.5 eV and to extend to 11 eV, over our whole exposure range (0–1000 L). The 7.5 eV peak height as a function of exposure shows that desorption takes place both in the chemisorption and the oxidation region. Emission of O+ occurs preferentially along the surface normal, with a base width of ≈ 60°. No azimuthal structure is observed. Additional electron energy dependent measurements clearly show a threshold near the oxygen 2s level.  相似文献   
7.
In this paper a model and simulation results of integrated semiconductor passively modelocked ring lasers are presented. The model includes nonlinear effects such as two-photon absorption and a non-linear refractive index, a logarithmic gain-carrier relation, and concentration dependent radiative and non-radiative carrier recombination rates. The optical bandwidth of the system is controlled by a digital filter. The model has been used to simulate two geometries of ring modelocked lasers. The first is a symmetric design, where the two counter propagating pulses in the cavity experience the same amplification and absorption. The second is an asymmetric design where the differences for the two directions of pulse propagation are maximised. Simulation results show that a symmetrical cavity shows a several times wider window for its operating parameters for stable modelocking.  相似文献   
8.
9.
We have quantum chemically analyzed element−element bonds of archetypal HnX−YHn molecules (X, Y=C, N, O, F, Si, P, S, Cl, Br, I), using density functional theory. One purpose is to obtain a set of consistent homolytic bond dissociation energies (BDE) for establishing accurate trends across the periodic table. The main objective is to elucidate the underlying physical factors behind these chemical bonding trends. On one hand, we confirm that, along a period (e. g., from C−C to C−F), bonds strengthen because the electronegativity difference across the bond increases. But, down a period, our findings constitute a paradigm shift. From C−F to C−I, for example, bonds do become weaker, however, not because of the decreasing electronegativity difference. Instead, we show that the effective atom size (via steric Pauli repulsion) is the causal factor behind bond weakening in this series, and behind the weakening in orbital interactions at the equilibrium distance. We discuss the actual bonding mechanism and the importance of analyzing this mechanism as a function of the bond distance.  相似文献   
10.
Taking |D(H(2)O)(x)|[AlSiO(4)] based materials (where D is Li, Na, K, Rb or Cs) as an archetypal aluminosilicate system, we use accurate density functional theory calculations to demonstrate how the substitution of silicon cations in silica, with pairs of aluminium and (alkali metal) cations, changes the energetic ordering of different competing structure-types. For large alkali metal cations we further show that the formation of porous aluminosilicate structures, the so-called zeolites, is energetically favored. These findings unequivocally demonstrate that zeolites can be energetic preferred reaction products, rather than being kinetically determined, and that the size of the (hydrated) cations in the pore, be it inorganic or organic, is critical for directing zeolite synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号