排序方式: 共有26条查询结果,搜索用时 0 毫秒
1.
Xinfang Hu Gongfang Hu Kaitlyn Crawford Christopher B. Gorman 《Journal of polymer science. Part A, Polymer chemistry》2013,51(21):4643-4649
The growth and degradation of poly(glycolic acid) (PGA) and poly(ε‐caprolactone) (PCL) brushes were compared. Using tin (octanoate) as the catalyst, optimal conditions were found for growth of each polyester brush from the hydroxy‐terminated silicon surface via ring‐opening polymerization. PCL brushes grew thicker at elevated temperatures but the thickest PGA brushes grew at room temperature. Unlike bulk polyesters that can degrade under both acidic and basic conditions, the confined surface polyester brushes only degraded under neutral or basic conditions. The degradation mechanism of grafted polyester brushes was probed through a blocking test. It was shown that the terminal hydroxy groups of these polyester brushes were essential to the degradation process indicating a preferential backbiting mechanism. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4643–4649 相似文献
2.
Kaitlyn A. Perez Cameron R. Rogers Emily A. Weiss 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(33):14195-14199
This Communication describes the use of CuInS2/ZnS quantum dots (QDs) as photocatalysts for the reductive deprotection of aryl sulfonyl-protected phenols. For a series of aryl sulfonates with electron-withdrawing substituents, the rate of deprotection for the corresponding phenyl aryl sulfonates increases with decreasing electrochemical potential for the two electron transfers within the catalytic cycle. The rate of deprotection for a substrate that contains a carboxylic acid, a known QD-binding group, is accelerated by more than a factor of ten from that expected from the electrochemical potential for the transformation, a result that suggests that formation of metastable electron donor–acceptor complexes provides a significant kinetic advantage. This deprotection method does not perturb the common NHBoc or toluenesulfonyl protecting groups and, as demonstrated with an estrone substrate, does not perturb proximate ketones, which are generally vulnerable to many chemical reduction methods used for this class of reactions. 相似文献
3.
Kaitlyn A. Perez Cameron R. Rogers Emily A. Weiss 《Angewandte Chemie (International ed. in English)》2020,59(33):14091-14095
This Communication describes the use of CuInS2/ZnS quantum dots (QDs) as photocatalysts for the reductive deprotection of aryl sulfonyl‐protected phenols. For a series of aryl sulfonates with electron‐withdrawing substituents, the rate of deprotection for the corresponding phenyl aryl sulfonates increases with decreasing electrochemical potential for the two electron transfers within the catalytic cycle. The rate of deprotection for a substrate that contains a carboxylic acid, a known QD‐binding group, is accelerated by more than a factor of ten from that expected from the electrochemical potential for the transformation, a result that suggests that formation of metastable electron donor–acceptor complexes provides a significant kinetic advantage. This deprotection method does not perturb the common NHBoc or toluenesulfonyl protecting groups and, as demonstrated with an estrone substrate, does not perturb proximate ketones, which are generally vulnerable to many chemical reduction methods used for this class of reactions. 相似文献
4.
Alyssa B. Sanders Jacob T. Zangaro Nakoa K. Webber Ryan P. Calhoun Elizabeth A. Richards Samuel L. Ricci Hannah M. Work Daniel D. Yang Kaitlyn R. Casey Joseph C. Iovine Gabriela Baker Taylor V. Douglas Sierra B. Dutko Thomas J. Fasano Sarah A. Lofland Ashley A. Rajan Mihaela A. Vasile Benjamin R. Carone Nathaniel V. Nucci 《Molecules (Basel, Switzerland)》2022,27(5)
Despite considerable advances in recent years, challenges in delivery and storage of biological drugs persist and may delay or prohibit their clinical application. Though nanoparticle-based approaches for small molecule drug encapsulation are mature, encapsulation of proteins remains problematic due to destabilization of the protein. Reverse micelles composed of decylmonoacyl glycerol (10MAG) and lauryldimethylamino-N-oxide (LDAO) in low-viscosity alkanes have been shown to preserve the structure and stability of a wide range of biological macromolecules. Here, we present a first step on developing this system as a future platform for storage and delivery of biological drugs by replacing the non-biocompatible alkane solvent with solvents currently used in small molecule delivery systems. Using a novel screening approach, we performed a comprehensive evaluation of the 10MAG/LDAO system using two preparation methods across seven biocompatible solvents with analysis of toxicity and encapsulation efficiency for each solvent. By using an inexpensive hydrophilic small molecule to test a wide range of conditions, we identify optimal solvent properties for further development. We validate the predictions from this screen with preliminary protein encapsulation tests. The insight provided lays the foundation for further development of this system toward long-term room-temperature storage of biologics or toward water-in-oil-in-water biologic delivery systems. 相似文献
5.
Andreas S. Kalogirou Michael P. East Tuomo Laitinen Chad D. Torrice Kaitlyn A. Maffuid David H. Drewry Panayiotis A. Koutentis Gary L. Johnson Daniel J. Crona Christopher R. M. Asquith 《Molecules (Basel, Switzerland)》2021,26(19)
A focused series of substituted 4H-1,2,6-thiadiazin-4-ones was designed and synthesized to probe the anti-cancer properties of this scaffold. Insights from previous kinase inhibitor programs were used to carefully select several different substitution patterns. Compounds were tested on bladder, prostate, pancreatic, breast, chordoma, and lung cancer cell lines with an additional skin fibroblast cell line as a toxicity control. This resulted in the identification of several low single digit micro molar compounds with promising therapeutic windows, particularly for bladder and prostate cancer. A number of key structural features of the 4H-1,2,6-thiadiazin-4-one scaffold are discussed that show promising scope for future improvement. 相似文献
6.
Merritt Smith Kaitlyn Stambaugh Lauren Smith Hye-Jin Son Amanda Gardner Scott Cordova Krystal Posey Donald Perry Alexandru S. Biris 《Vibrational Spectroscopy》2009,49(2):288-297
Adsorption properties of acetylsalicylic acid (AA), ibuprofen and acetaminophen deposited from volatile solvents with varying protic/aprotic properties on vacuum-evaporated silver films were characterized using surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman spectroscopy (SERS). SERS preferentially enhances monolayer Raman shifts, while SEIRA can enhance the infrared absorbance of the monolayer and multilayers. To our best knowledge, this is the first reported study of these molecules using a combination of SERS/SEIRA. SERS revealed that AA and ibuprofen adsorbed ionically in monolayers, independent of the deposition solvents used in the process. SEIRA experiments showed that AA multilayers condensed molecularly using a deposition solvent with polar bonds. However, when an alkane deposition solvent with non-polar bonds such as n-heptane was used, AA adsorbed as acetylsalicylate ions in the first few multilayers, while ibuprofen always adsorbed as the free acid in the multilayer. These ionization trends depend upon the affinity of AA and ibuprofen for the underlying silver film. TPD experiments on silver powders further demonstrated that ibuprofen affinity for silver was less than AA. Furthermore, SEIRA indicated that acetaminophen adsorbed as multilayers of metastable polymorphs using protic or polar aprotic deposition solvents. Protic deposition solvents gave higher quality SERS spectra of an acetaminophen monolayer in comparison to polar aprotic deposition solvents. Such studies could find significant applications in biochemical and nanotechnology processes such as drug delivery, catalysis, and tissue engineering and will contribute to the understanding of the impact and fate of analgesics released into the environment. 相似文献
7.
Lee J. Silverberg Carlos Pacheco Debashish Sahu Peter Scholl Hany F. Sobhi Joshua T. Bachert Kaitlyn Bandholz Ryan V. Bendinsky Heather G. Bradley Baylee K. Colburn David J. Coyle Jonathon R. Dahl Megan Felty Ryan F. Fox Kyanna M. Gonzalez Jasra M. Islam Stacy E. Koperna Quentin J. Moyer Duncan J. Noble Melissa E. Ramirez Ziwei Yang 《Journal of heterocyclic chemistry》2020,57(4):1797-1805
A series of 11 novel 3-aryl-2-phenyl-2,3-dihydro-4H-1,3-benzothiazin-4-ones was prepared at room temperature by T3P-mediated cyclization of N-aryl-C-phenyl imines with thiosalicylic acid. This provides simple and ready access to N-aryl compounds in this family, which have been generally difficult to prepare. 相似文献
8.
A (4+1)‐cycloaddition is reported between 1,2‐dicarbonyls and aza‐o‐quinone methide precursors to access 2,3‐dihydroindoles bearing a tetra‐substituted carbon center. The utilization of dioxyphospholenes as carbene surrogates provided dihydroindoles in 20–90 % yield, wherein the electronic nature of the dioxyphospholene impacts its role in the reaction. 相似文献
9.
Kaitlyn S. Otte Dr. Julie E. Niklas Chad M. Studvick Andrew C. Boggiano Dr. John Bacsa Prof. Ivan A. Popov Prof. Henry S. La Pierre 《Angewandte Chemie (International ed. in English)》2023,62(34):e202306580
The study of the redox chemistry of mid-actinides (U−Pu) has historically relied on cerium as a model, due to the accessibility of trivalent and tetravalent oxidation states for these ions. Recently, dramatic shifts of lanthanide 4+/3+ non-aqueous redox couples have been established within a homoleptic imidophosphorane ligand framework. Herein we extend the chemistry of the imidophosphorane ligand (NPC=[N=PtBu(pyrr)2]−; pyrr=pyrrolidinyl) to tetrahomoleptic NPC complexes of neptunium and cerium ( 1-M , 2-M , M=Np, Ce) and present comparative structural, electrochemical, and theoretical studies of these complexes. Large cathodic shifts in the M4+/3+ (M=Ce, U, Np) couples underpin the stabilization of higher metal oxidation states owing to the strongly donating nature of the NPC ligands, providing access to the U5+/4+, U6+/5+, and to an unprecedented, well-behaved Np5+/4+ redox couple. The differences in the chemical redox properties of the U vs. Ce and Np complexes are rationalized based on their redox potentials, degree of structural rearrangement upon reduction/oxidation, relative molecular orbital energies, and orbital composition analyses employing density functional theory. 相似文献