排序方式: 共有12条查询结果,搜索用时 12 毫秒
1.
We have explored the photochemical behavior of cationic triarylmethane dye monomers and dimers free in solution and noncovalently bound to bovine serum albumin (BSA) and examined how self-association and the formation of host-guest complexes involving biopolymers and photosensitizers affect the competition between the photosensitization type I and type II mechanisms. Our results have clearly indicated that tri-para-substituted triarylmethane dyes bind efficiently to albumin as monomers and dimers and, interestingly, that the formation of dye aggregates in aqueous solutions is actually assisted by the protein. Protein-assisted dye aggregation takes place under conditions of high biopolymer loading (high [dye]/[protein] ratios), as attested by the appearance of a hypsochromically shifted absorption band (H-band) that overlaps with the spectral shoulder of the respective dye monomer. As predicted by the molecular exciton theory, the intersystem crossing efficiency in H-type dimers is expected to be higher than in the respective dye monomers, and photoinduced electron transfer events are intrinsically favored in dye aggregates as a result of the physical contact between donor and acceptor. We have found that when triarylmethanes are noncovalently bound to BSA their photoreactivity undergoes a remarkable enhancement, and that the photooxidation mechanism type I is particularly favored in the macromolecular environment. A comparative examination of the behavior of triarylmethane dyes with that of methylene blue have shown that in the case of methylene blue the binding phenomenon also favor the type I mechanism. 相似文献
2.
Oliveira CS Branco KP Baptista MS Indig GL 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2002,58(13):2971-2982
We have characterized the spectroscopy properties of crystal violet (CV+) and ethyl violet (EV+) in liquid solutions as a function of the solvent type and dye concentration. The analysis of how solvent properties and dye concentration affects the electronic spectra of these tri-para-dialkylamino substituted tryarylmethane (TAM+) dyes was performed on the basis of two spectroscopic parameters, namely the difference in wavenumber (deltanu) between the maximum and the shoulder that appears in the short-wavelength side of the respective maximum visible band (deltanu = 1/lambda(shoulder)-1/lambda(max) cm(-1)), and the wavelength of the maximum absorption (lambda(max)). The solvent and the concentration effects on lambda(max) and deltanu have indicated that both solute/solute (ion-pairing and dye aggregation) and solute/solvent (H-bonding type) interactions modulate the shape of the visible electronic spectra of these dyes in solution. In solvent with small dieletric constant (epsilon < approximately 10), the formation of ion-pairs represents a major contribution to the shaping of these spectra. Upon increasing dye concentration the formation of ion-pairs was characterized by an increase in deltanu observed concomitantly with a red shift in lambda(max) In chloroform and chlorobenzene the ion-pair association constant of CV+ and EV+ with Cl- ions were found to be in the order of 10(6) and 10(5) M(-1), respectively. In trichloroethylene the association constant for the CV+Cl- pair was 10(8) M(-1). In water, dye aggregation instead of ion-pairing represents a major contribution to the shaping of the visible spectra of CV+ and EV+. Dye aggregation was indicated by an increase in deltanu observed concomitantly with a blue shift in lambda(max) upon increasing dye concentration. The distinct behavior of deltanu for dye aggregation and ion-pairing as a function of dye concentration can therefore assist in the characterization of these two distinct phenomena. The solute/solvent interactions were studied in a series of polar solvents in which solute/solute interactions do not occur in any detectable extent. The dependence found for deltanu as a function of the Kamlet-Tafts solvatochromic parameters (alpha, beta and pi*) is in keeping with previous inferences indicating that the splitting in the overlapped absorption band of CV+ and EV+ in hydroxilated solvents arises from a perturbation in the molecular symmetry induced by hydrogen bonding (donor-acceptor) type interactions with solvent molecules. A distinction between the effects of solute/solute and solute/solvent interactions on the visible spectra of these dyes is provided. 相似文献
3.
4.
The conceptual basis for the development of mitochondrial targeting as a novel therapeutic strategy for both chemotherapy and photochemotherapy of neoplastic diseases rests on the observation that enhanced mitochondrial membrane potential is a common tumor cell phenotype. The potential of this strategy is highlighted by the fact that the toxic effects associated with a number of cationic dyes known to localize in energized cell mitochondria are much more pronounced in tumor cells than in normal cells. Here we evaluate the phototoxic properties of four bromine derivatives of rhodamine-123 toward human uterine sarcoma (MES-SA) and green monkey kidney (CV-1) cells and compare the degrees of tumor cell selectivity associated with these dyes with those associated with two model mitochondrial triarylmethanes (crystal violet and ethyl violet). Selective phototoxicity toward tumor cells was found to be highly dependent upon the lipophilic/hydrophilic character of the cationic photosensitizer. Our experimental data have indicated that the probability of success of mitochondrial targeting in (photo)chemotherapy of neoplastic diseases is higher when the octan-1-ol/water partition coefficient of the drug candidate falls within approximately two orders of magnitude from that of the prototypical mitochondria-specific dye rhodamine-123. 相似文献
5.
6.
A Gurtu P K Malhotra I S Mittra P M Sood SC Gupta VK Gupta GL Kaul LK Mangotra Y Prakash NK Rao ML Sharma 《Pramana》1974,3(5):311-322
This is a continuation of our earlier investigation (Gurtuet al 1974Phys. Lett. 50 B 391) on multiparticle production in proton-nucleus collisions based on an exposure of emulsion stack to 200 GeV/c beam at the NAL. It is found that the ratioR em = 〈n s〉/〈n ch〉, where 〈n ch〉 is the charged particle multiplicity in pp-collisions, increases slowly from about 1 at 10 GeV/c to 1·6 at 68 GeV/c and attains a constant value of 1·71 ± 0·04 in the region 200 to 8000 GeV/c. Furthermore,R em = 1·71 implies an effectiveA-dependence ofR A =A 0.18,i.e., a very weak dependence. Predictions ofR em on various models are discussed and compared with the emulsion data. Data seem to favour models of hadron-nucleon collisions in which production of particles takes place through adouble step mechanism,e.g., diffractive excitation, hydrodynamical and energy flux cascade as opposed to models which envisage instantaneous production. 相似文献
7.
8.
The observation that enhanced mitochondrial membrane potential is a prevalent cancer cell phenotype has provided the conceptual basis for the development of mitochondrial targeting as a novel therapeutic strategy for both chemo- and photochemotherapy of neoplastic diseases. Cationic triarylmethane (TAM(+)) dyes represent a series of photosensitizers whose phototoxic effects develop at least in part at the mitochondrial level. In this report we describe how the molecular structure of four representative TAM(+) dyes (Crystal Violet, Ethyl Violet, Victoria blue R, and Victoria pure blue BO) affects their efficiency as mediators of the photoinduced inactivation of two model mitochondrial targets, hexokinase (HK) and DNA. Our results have indicated that TAM(+) dyes efficiently bind to HK and DNA in aqueous media both as dye monomers and aggregates, with the degree of aggregation increasing with increasing the lipophilic character of the photosensitizer. The efficiency with which HK and DNA are damaged upon 532 nm photolysis of biopolymer-TAM(+) complexes was found to decrease upon increasing the degree of dye aggregation over these macromolecular templates. Comparative experiments carried out both in water and in D(2)O, and in air-equilibrated and nitrogen-purged samples have also indicated that, at least when Crystal Violet is used as the photosensitizer, the mechanism of macromolecular damage does not require the involvement of molecular oxygen to operate. This finding makes Crystal Violet a potential candidate for use in photochemotherapy of hypoxic or poorly perfused tumor areas. 相似文献
9.
The effects of substituent type and position on the proton transfer reaction of 3-hydroxytropolone(3-OHTRN) have been investigated theoretically by using density functional theory at the level of B3LYP/ 6-31+G** method. The influence of solvent on the proton transfer reactions of substituted 3-OHTRN has been examined using the self-consistent isodensity polarized continuum model(SCI-PCM) in water. As a result, while the proton transfer reaction is kinetically the easiest by substitution on position 3 of-NH2 group in the gas phase, it is kinetically the easiest by substitution on position 5 of the same group in water. In addition, these reactions are either kinetically or thermodynamically easier in the gas phase than that in water, except the reaction of structure with-NH2 group at position 6. 相似文献
10.