首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   24篇
  国内免费   25篇
化学   197篇
晶体学   3篇
力学   42篇
综合类   2篇
数学   12篇
物理学   46篇
  2024年   2篇
  2023年   15篇
  2022年   24篇
  2021年   22篇
  2020年   16篇
  2019年   16篇
  2018年   18篇
  2017年   7篇
  2016年   18篇
  2015年   9篇
  2014年   10篇
  2013年   10篇
  2012年   14篇
  2011年   17篇
  2010年   10篇
  2009年   7篇
  2008年   9篇
  2007年   12篇
  2006年   13篇
  2005年   7篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2001年   1篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   8篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1957年   1篇
排序方式: 共有302条查询结果,搜索用时 0 毫秒
1.
A new approach has been developed to improve SO2 sorption by cyano‐containing ionic liquids (ILs) through tuning the basicity of ILs and cyano–sulfur interaction. Several kinds of cyano‐containing ILs with different basicity were designed, prepared, and used for SO2 capture. The interaction between these cyano‐containing ILs and SO2 was investigated by FTIR and NMR methods. Spectroscopic investigations and quantum chemical calculations showed that dramatic effects on SO2 capacity originate from the basicity of the ILs and enhanced cyano–sulfur interaction. Furthermore, the captured SO2 was easy to release by heating or bubbling N2 through the ILs. This efficient and reversible process, achieved by tuning the basicity of ILs, is an excellent alternative to current technologies for SO2 capture.  相似文献   
2.
Amide-water mixtures are studied by all-atom molecular dynamics (MD) simulations and the relative temperature-dependent NMR experiment. The weak C-H...O contacts are found in the amide-water systems theoretically and experimentally. The statistical results of the average numbers of hydrogen bonds indicate that the methyl groups in amide molecules represent different capabilities in forming the weak C-H...O contacts. The statistics also imply that the C-H...O contacts are more obvious in the amide-rich region than those in the water-rich region. The temperature-dependent NMR spectra are also adopted to investigate the weak C-H...O contacts in the amide-water systems. The relative chemical shifts of the methyl groups are in good agreement with the MD simulations.  相似文献   
3.
Chemical shifts of the alcohol and DMF protons in DMF–alcohol mixtures with the mole fraction of alcohol are reported in order to study the hydrogen bond interaction present in the mixtures. The densities of DMF–methanol mixture at 22°C are also measured. Excess volumes and excess chemical shifts are correlated by the Redlich–Kister equation. The relation between excess volumes and excess chemical shifts in the mixtures is discussed. It is found that the maximum excess chemical shifts E(CHO-OH) and E(CH3-OH) are positioned at about mole fraction methanol = 0.57 for the DMF–methanol system, as is V E. The results show that the NMR spectral method offers a valuable approach to similar future studies of interactions in mixtures.  相似文献   
4.
An all-atom dimethyl sulfoxide (DMSO) model and a TIP5P water model have been adopted for molecular dynamics simulation. Two new qualities ηrelE and ηrel are introduced to describe the anomalous nonideal behaviors of DMSO–water mixtures. The simulation is compared with chemical shift and excess enthalpy of mixing, which shows good concentration dependences. In addition, our all-atom simulation also indicates that the C–H groups of DMSO may interact with the oxygen atoms of water and DMSO. The weak C–HO contacts and the strong O–HO hydrogen bonds represent the consistent concentration dependences, which exhibits the cooperation effect.  相似文献   
5.
Compared to the general ionic liquids (ILs), a significant deviation of the binary mixtures of 1-decyl-3-methylimidazolium tri(hexafluoroacetylaceto)-copper(II) ([C10mim][Cu(hfacac)3]) with methanol was found, indicating the way methanol interacts with ILs might be governed by the special structure of the chelating anion. IR results showed that the (C2-H) of 1-decyl-3-methylimidazolium hexafluoroacetylacetonate ([C10mim][hfacac]) blue-shifted more significantly than that of [C10mim][Cu(hfacac)3], meanwhile the (C=O) red-shifted in [C10mim][Cu(hfacac)3], which is contrast with that in [C10mim][hfacac]. Two-dimensional correlation analysis of the FTIR spectra indicated that the chelating cavity has little effect on the sequence of the ILs sites that interact with methanol. Combined with small angle X-ray scattering (SAXS) results, the picture of mixing processes in these two systems were proposed. Methanol interacts directly with the anion followed by the cation in [C10mim][hfacac], while methanol preferentially enters the chelating cavity and enhances the packing effect in the [C10mim][Cu(hfacac)3] system.  相似文献   
6.
Polymer nanodielectrics render a great material platform for exhibiting the intrinsic nature of incorporated particles, particularly semiconducting types, and their interfaces with the polymer matrix. Incorporating the oxide fillers with higher loading percentages (>40 vol%) encounters particular challenges in terms of dispersion, homogeneous distribution, and porosity from the process. This work investigated the dielectric loss and electrical conduction behaviors of composites containing semiconducting ZnO varistor particles of various concentrations using the epoxy impregnation method. The ZnO varistor particles increased the dielectric permittivity, loss, and electrical conductivity of the epoxy composites into three different regimes (0–50 vol%, 50–70 vol%, 70–100 vol%), particularly under an electric bias field or at higher temperatures. For lower loading fractions below 50 vol%, the dielectric responses are dominated by the insulating epoxy matrix. When loading fractions are between 50 and 70 vol%, the dielectric and electric responses are mostly associated with the semiconducting interfaces of ZnO varistor particles and ZnO–epoxy. At above 70 vol%, the apparent increase in the dielectric loss and conductivity is primarily associated with the conducting ZnO core forming the interconnected channels of electric conduction. The foam-agent-assisted ZnO varistor particle framework appears to be a better way of fabricating composites of filler loading above 80 vol%. A physical model using an equivalent capacitor, diode, and resistor in the epoxy composites was proposed to explain the different property behaviors.  相似文献   
7.
Journal of Thermal Analysis and Calorimetry - The purpose of this study is to numerically investigate flow field and turbulent heat transfer of hybrid nanofluid, water–DWCNT–TiO2 in a...  相似文献   
8.
Lithium-ion batteries have dominated the energy market from portable electronic devices to electric vehicles. However, the LIBs applications are limited seriously when they were operated in the cold regions and seasons if there is no thermal protection. This is because the Li+ transportation capability within the electrode and particularly in the electrolyte dropped significantly due to the decreased electrolyte liquidity, leading to a sudden decline in performance and short cycle-life. Thus, design a low-temperature electrolyte becomes ever more important to enable the further applications of LIBs. Herein, we summarize the low-temperature electrolyte development from the aspects of solvent, salt, additives, electrolyte analysis, and performance in the different battery systems. Then, we also introduce the recent new insight about the cation solvation structure, which is significant to understand the interfacial behaviors at the low temperature, aiming to guide the design of a low-temperature electrolyte more effectively.  相似文献   
9.
The structures and conformational properties of 1-alkyl-3-methylimidazolium halide ionic liquids have been studied with a Becke's 3 Parameter functional method. The interaction mechanisms between the cation and the anion in 1-ethyl-3-methylimidazolium (Emim+) halide and 1-butyl-3-methylimidazolium (Bmim+) halide ionic liquids were investigated using 6-31G*, 6-31++G**, and 6-311++G** basis sets. Forty structures of different ion pairs were optimized and geometrical parameters of them have been discussed in details. Halide ions (Cl- or Br-) have been gradually placed in different regions around imidazolium cation and the interaction energies between the anion and the cation have been calculated. Theoretical results indicate that there are four activity regions in the vicinity of the imidazolium cations, in these regions the imidazolium cations and the halide anions formed stable ion pairs. Imidazolium cations can form hydrogen bond interactions with one, two or three but no more than three nearest halide anions. The halide ions are situated in hydrogen bond positions rather than at random.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号