排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
We investigate the crossover from Bardeen-Cooper-Schrieffer (BCS) superfluidity to Bose-Einstein condensation (BEC) in a two-dimensional Fermi gas at T=0 using the fixed-node diffusion Monte?Carlo method. We calculate the equation of state and the gap parameter as a function of the interaction strength, observing large deviations compared to mean-field predictions. In the BEC regime our results show the important role of dimer-dimer and atom-dimer interaction effects that are completely neglected in the mean-field picture. Results on Tan's contact parameter associated with short-range physics are also reported along the BCS-BEC crossover. 相似文献
2.
We develop a time-dependent mean-field theory to investigate the released momentum distribution and the released energy of an ultracold Fermi gas in the BCS-BEC crossover after the scattering length has been set to zero by a fast magnetic-field ramp. For a homogeneous gas we analyze the nonequilibrium dynamics of the system as a function of the interaction strength and of the ramp speed. For a trapped gas the theoretical predictions are compared with experimental results. 相似文献
3.
4.
Giorgini MG Arcioni A Polizzi C Musso M Ottaviani P 《The Journal of chemical physics》2004,120(10):4969-4979
We have investigated the Raman profiles of the nu(C[Triple Bond]N) and nu(C=O) vibrational modes of the nematic liquid crystal ME6N (4-cyanophenyl-4(')-hexylbenzoate) in the isotropic phase at different temperatures and used them as probes of the dynamics and structural organization of this liquid. The vibrational time correlation functions of the nu(C[Triple Bond]N) mode, rather adequately interpreted within the assumption of exponential modulation function (the Kubo-Rothschild theory), indicate that the system experiences an intermediate dynamical regime that gets only slightly faster with increasing temperature. However, this theory fails in predicting the non-exponential behavior that the time correlation functions manifest in the long time range (t>3 ps). For this reason we have additionally approached the interpretation of vibrational correlation functions in terms of the theory formulated by Rothschild and co-workers for locally structured liquids. The application of this theory reveals that the molecular dynamics in this liquid crystal in the isotropic phase is that deriving from a distribution of differently sized clusters, which narrows as the temperature increases. Even at the highest temperature reached in this study (87 degrees C above the nematic-isotropic transition), the liquid has not yet achieved the structure of the simple liquid and the dynamics has not reached the limit of the single channel process. The vibrational and orientational relaxations occur in very different time scales. The temperature independence of the orientational dynamics in the whole range from 55 degrees C to 135 degrees C has been referred to the nonhydrodynamic behavior of the system, arising when local pseudonematic structures persist for times longer than the orientational relaxation. The occurrence of the process of resonant vibrational energy transfer between the C=O groups of adjacent molecules has been revealed in the isotropic phase by a slightly positive Raman noncoincidence effect in the band associated with the nu(C=O) mode. A qualitative interpretation is tentatively given in terms of partial cancellation of contributions deriving from structures having opposite orientations of their C=O groups. 相似文献
5.
The nu(C=O) Raman band frequencies of acetone have been analyzed to separate the contributions of the environmental effect and the vibrational coupling to the gas-to-liquid frequency shifts of this band and to elucidate the changes in these two contributions upon dilution in DMSO. We have measured the frequencies of the nu((12)C=O) band in acetone/DMSO binary mixtures, the nu((13)C=O) band of the acetone-(13)C=O present as a natural abundance isotopic impurity in these mixtures, and both the nu((12)C=O) and nu((13)C=O) bands in the acetone-(12)C=O/acetone-(13)C=O isotopic mixtures at infinite dilution. These frequencies are compared with those of the nu((12)C=O) band in the acetone/CCl(4) binary mixtures measured previously. We have found the following three points: (i) The negative environmental contribution for the nu((12)C=O) oscillator of acetone completely surrounded by DMSO is reduced in magnitude by +5.5 cm(-1) and +7.8 cm(-1) upon the complete substitution of DMSO with acetone and CCl(4) molecules, respectively, indicating the progressive reduction of the attractive forces exerted by the environment on the nu((12)C=O) mode of acetone. (ii) In DMSO and other solvents, the contribution of the vibrational coupling to the frequency of the isotropic Raman nu((12)C=O) band of acetone becomes progressively more negative with increasing acetone concentration up to a value of -5.5 cm(-1), while the contribution to the frequency of the anisotropic Raman band remains approximately unchanged. The only difference resides in the curvatures of the concentration dependencies of these contributions which depend on the relative solute/solvent polarity. (iii) The noncoincidence effect (separation between the anisotropic and isotropic Raman band frequencies) of the nu(C=O) mode in the acetone/DMSO mixtures exhibits a downward (concave) curvature, in contrast to that in the acetone/CCl(4) mixtures, which shows an upward (convex) curvature. This result is supported by MD simulations and by theoretical predictions and is interpreted as arising from the reduction and enhancement of the short-range orientational order of acetone in the acetone/DMSO and acetone/CCl(4) mixtures, respectively. 相似文献
6.
S -nitrosothiols have many biological activities and may act as nitric oxide (NO) carriers and donors, prolonging NO half-life in vivo. In spite of their great potential as therapeutic agents, most S -nitrosothiols are too unstable to isolate. We have shown that the S -nitroso adduct of N -acetylcysteine (SNAC) can be synthesized directly in aqueous and polyethylene glycol (PEG) 400 matrix by using a reactive gaseous (NO/O2 ) mixture. Spectral monitoring of the S–N bond cleavage showed that SNAC, synthesized by this method, is relatively stable in nonbuf-fered aqueous solution at 25°C in the dark and that its stability is greatly increased in PEG matrix, resulting in a 28-fold decrease in its initial rate of thermal decomposition. Irradiation with UV light (λ= 333 nm) accelerated the rate of decomposition of SNAC to NO in both matrices, indicating that SNAC may find use for the photogeneration of NO. The quantum yield for SNAC decomposition decreased from 0.65 ± 0.15 in aqueous solution to 0.047 ± 0.005 in PEG 400 matrix. This increased stability in PEG matrix was assigned to a cage effect promoted by the PEG microenvironment that increases the rate of geminated radical pair recombination in the homolytic S–N bond cleavage process. This effect allowed for the storage of SNAC in PEG at −20°C in the dark for more than 10 weeks with negligible decomposition. Such stabilization may represent a viable option for the synthesis, storage and handling of S -nitrosothiol solutions for biomedical applications. 相似文献
7.
Tosi G Conti C Giorgini E Ferraris P Garavaglia MG Sabbatini S Staibano S Rubini C 《The Analyst》2010,135(12):3213-3219
Fourier transform infrared (FTIR) microspectroscopy has been employed to investigate benign (ordinary dermal and Reed nevi), dysplastic and malignant (invasive melanoma) skin lesions through the analysis of spectral changes of melanocytes as well as in the evaluation of the presence of melanin. Hierarchical cluster analysis and principal component analysis led to a satisfactory separation of malignant from dysplastic and normal melanocytes. Also, on enlarging the clustering with spectra from Reed and dermal nevi, the multivariate analysis segregated well the spectral data into discrete clusters, allowing the obtaining of reliable average spectra for analysis at the molecular level of the main groups or components responsible for the biological and biochemical changes. The most significant spectral characteristics appear to be related to differences in secondary protein structures, in nucleic acid conformation, in intra- and intermolecular bonding. In all cases, supervised and unsupervised spectral analyses resulted in satisfactory agreement with histopathological findings. 相似文献
8.
Giorgini E Conti C Ferraris P Sabbatini S Tosi G Rubini C Vaccari L Gioacchini G Carnevali O 《Analytical and bioanalytical chemistry》2010,398(7-8):3063-3072
The aim of this study was to verify the effects of probiotic Lactobacillus rhamnosus on zebrafish oocyte maturation using FPA (focal plane array) FTIR imaging together with specific biochemical assays (SDS-PAGE, real-time PCR and enzymatic assay). Oocyte growth is prevalently due to a vitellogenic process which consists of the hepatic synthesis of vitellogenin and its selective uptake during maturation. The administration of L. rhamnosus IMC 501 for 10 days induced chemical changes to oocyte composition, promoting the maturation process. Some interesting biochemical features, linked to protein secondary structure (amide I band) and to phospholipidic and glucidic patterns, were detailed by vibrational analysis. The spectroscopic results were supported by the early increase of the lysosomal enzyme involved in the final oocyte maturation, the cathepsin L. This enzyme increases during follicle maturation, with the highest levels in class IV oocytes. In treated females, class III oocytes showed higher cathepsin L gene expression and enzymatic activity, with levels comparable to class IV oocytes isolated from controls; this can be related to the proteolytic cleavage of the higher molecular mass yolk protein components, as evidenced by SDS-PAGE. 相似文献
9.
Sanchez-sanz M; Blyth MG 《The Quarterly Journal of Mechanics and Applied Mathematics》2007,60(2):125-138
Unsteady, axisymmetric stagnation flow about a circular cylinderis examined when the far-field flow is a periodic function oftime with a fixed time average and an oscillatory part of prescribedamplitude and frequency. Solutions are computed for arbitraryvalues of the Reynolds number, quantifying the effects of surfacecurvature, and a frequency parameter based on the period ofthe far-field flow. It is found that solutions remain regularand periodic provided that the far-field amplitude lies belowa critical value. Above this value, solutions terminate in afinite-time singularity. The blow-up time is delayed by increasingthe curvature of the surface. These results are corroboratedby asymptotic predictions valid in the limits of small and largeamplitude and frequency. For large Reynolds number, the problemreduces to the two-dimensional stagnation-point flow againsta plane wall studied by previous authors. 相似文献
10.