首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   9篇
物理学   1篇
  2022年   1篇
  2021年   1篇
  2013年   1篇
  2011年   1篇
  2005年   2篇
  2004年   3篇
  1991年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The use of non-polar, small polymers as matrices for the analysis of low molecular weight compounds in polymer-assisted laser desorption/ionization mass spectrometry (PALDI-MS) is demonstrated. The matrices evaluated were either based on an oligothiophene or a benzodioxin backbone. Metallocenes, polycyclic hydrocarbons, a fluorosurfactant, and a subset of small organic compounds with various functionalities, served as model analytes. The mechanism of ionization charge transfer is discussed and ionization potentials for the matrices in the study have been estimated using density functional theory (DFT) calculations. Some of the results are possibly contradictory to the generally accepted limiting conditions for gas-phase charge-transfer reactions. These results are interpreted in the light of energy pooling. Also a new mass calibration procedure for the low-mass region in positive ion mode is presented, and some aspects of the ionization/desorption process leading to radical cations are studied.  相似文献   
2.
We have used X-ray diffraction to study the structural phase of CeCoIn5 in external pressure. Using high-pressure X-ray diffraction, we find that the crystalline phase is stable in the P4/mmm phase for pressures ≤51.2 GPa. From our measured equation of state, we find a bulk modulus given by B 0 = 72.8 ± 2.9 GPa and a first pressure derivative of B = 5.1 ± 0.3. Measurement of the electrical resistivity of CeCoIn5 to pressures as high as 34.4 GPa shows the existence of a peak in resistivity at p ? = 8.2 ± 0.2 GPa.  相似文献   
3.
A fluorosurfactant has been studied using capillary electrophoresis and mass spectrometry. The fluorosurfactant, FC134, can be used as a buffer additive in capillary electrophoresis in order to decrease wall adsorption of proteins and in micellar electrokinetic chromatography. However, it has been discovered that this fluorosurfactant is polydisperse, thus containing substances with different lengths and structures. In this work, the fluorosurfactant sample components were separated by capillary electrophoresis. An uncoated as well as a poly(vinyl alcohol)-coated capillary were used with running electrolytes containing methanol and acetic acid. Following the capillary electrophoretic separation, fractions were collected for further analysis by MALDI-MS. Non-fractionated samples were also analyzed both by MALDI-MS and by ESI-MS.  相似文献   
4.
Summary. Mitochondrial carnitine palmitoyltransferases I and II (CPTI and CPTII), together with the carnitine carrier, transport long-chain fatty acyl-CoAs from the cytosol to the mitochondrial matrix for β-oxidation. As an enzyme that catalyzes the rate-limiting step in fatty acid oxidation, CPTI is inhibited by malonyl-CoA, the first intermediate in fatty acid synthesis. Our development of a high level of expression for CPTI and CPTII in P. pastoris, a yeast with no endogenous CPT activity has enabled us to map the malonyl-CoA and substrate binding sites by mutational analysis. Using deletion and substitution mutants of L-CPTI expressed in P. pastoris, we have shown that Glu3 and His5 are necessary for malonyl-CoA inhibition and high-affinity binding of L-CPTI but not for catalysis. Similar studies of M-CPTI clearly establish that the N-terminal residues Glu3, Val19, Leu23, and Ser24 in M-CPTI are important for malonyl-CoA inhibition and binding, but not for catalysis. Furthermore, using chimeras between rat and pig L-CPTI, and deletion mutation analysis, we demonstrated that the differences in malonyl-CoA sensitivity observed between the pig and rat L-CPTI were due to differences in the interaction of the first 18 N-terminal amino acid residues with the C-terminal region of the respective enzymes. Consistent with this, the conserved C-terminal residues R601, E603, R606, and K560 were found to be important for L-CPTI activity, malonyl-CoA inhibition and binding, because mutation of these residues decreased malonyl-CoA sensitivity and enzyme activity. We also identified two conserved C-terminal residues in L-CPTI, D567, and E590, that when mutated to alanine cause a substantial increase in malonyl-CoA sensitivity, suggesting a structural basis for the differences in malonyl-CoA sensitivity between L-CPTI and M-CPTI. Our cysteine-scanning mutagenesis of M-CPTI revealed that a single Cys residue, Cys305, was essential for catalysis. In addition, deletion and substitution analysis of the extreme C-terminal region of M-CPTI, suggest that L764 may be important for proper folding and optimal activity. In summary, our structure-function studies with the mitochondrial carnitine palmitoyltransferases I and II have identified critical residues for inhibitor and substrate binding and catalysis.  相似文献   
5.
A method for preparation of silica nanowires with dimensions of d = 10-100 nm, l = 5-500 nm, is described. The nanostructured material is an integral part of the inner surface of narrow bore fused-silica capillary tubing. The wire preparation method is based on a decomposition of 2-chloro-1,1,2-trifluoroethyl methyl ether at elevated temperature and pressure. The silica bulk material is rearranged via a sustained silica-hydrogen fluoride chemistry, and reaction mechanisms for this process are proposed. The method is suitable for preparing long lengths of tubing with the modified surface. It is our belief that the texture of the capillary wall with its increased surface area is useful for applications such as microreactions, catalysis, and high-resolution pressure and/or electrodriven open-tubular liquid chromatography.  相似文献   
6.
Recently, matrices based on oligomers of dioxin and thiophene (polymer-assisted laser desorption/ionization (PALDI)) have been described for mass spectrometric (MS) analysis of low molecular weight compounds (Woldegiorgis A, von Kieseritzky F, Dahlstedt E, Hellberg J, Brinck T, Roeraade J. Rapid Commun. Mass Spectrom. 2004; 18: 841-852). In this paper, we report the use of PALDI matrices for low molecular weight polymers. An evaluation with polystyrene and polyethylene glycol showed that no charge transfer ionization occurs. Ionization is mediated through metal ion adduction. Comparison of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) data for two very low molecular weight polymers with data obtained from size-exclusion chromatography (SEC) revealed a systematic difference regarding mean molecular weight and dispersity. Further, the mass spectra obtained with PALDI matrices had a higher signal-to-noise ratio than the spectra obtained with conventional matrices. For polymers with higher molecular weights (>1500 Da), the conventional matrices gave better performance. For evaluation of the MALDI spectra, three non-linear mathematical models were evaluated to model the cumulative distributions of the different oligomers and their maximal values of Mw, Mn and PDI. Models based on sigmoidal or Boltzmann equations proved to be most suitable. Objective modeling tools are necessary to compare different sample and instrumental conditions during method optimization of MALDI analysis of polymers, since the bias between MALDI and SEC data can be misleading.  相似文献   
7.
Waste plastics are non-degradable constituents that can stay in the environment for centuries. Their large land space consumption is unsafe to humans and animals. Concomitantly, the continuous engineering of plastics, which causes depletion of petroleum, poses another problem since they are petroleum-based materials. Therefore, energy recovering trough pyrolysis is an innovative and sustainable solution since it can be practiced without liberating toxic gases into the atmosphere. The most commonly used plastics, such as HDPE, LDPE (high- and low-density polyethylene), PP (polypropylene), PS (polystyrene), and, to some extent, PC (polycarbonate), PVC (polyvinyl chloride), and PET (polyethylene terephthalate), are used for fuel oil recovery through this process. The oils which are generated from the wastes showed caloric values almost comparable with conventional fuels. The main aim of the present review is to highlight and summarize the trends of thermal and catalytic pyrolysis of waste plastic into valuable fuel products through manipulating the operational parameters that influence the quality or quantity of the recovered results. The properties and product distribution of the pyrolytic fuels and the depolymerization reaction mechanisms of each plastic and their byproduct composition are also discussed.  相似文献   
8.
The advancement and growth of nanotechnology lead to realizing new and novel multi-metallic nanostructures with well-defined sizes and morphology,resulting in an improvement in their performance in various catalytic applications.The trimetallic nanostructured materials are synthesized and designed in different architectures for energy conversion electrocatalysis.The as-synthesized trimetallic nanostructures have found unique physiochemical properties due to the synergistic combination of the three different metals in their structures.A vast array of approaches such as hydrothermal,solvothermal,seedgrowth,galvanic replacement reaction,biological,and other methods are employed to synthesize the trimetallic nanostructures.Noteworthy,the trimetallic nanostructures showed better performance and durability in the electrocatalytic fuel cells.In the present review,we provide a comprehensive overview of the recent strategies employed for synthesizing trimetallic nanostructures and their energy-related applications.With a particular focus on hydrogen evolution,alcohol oxidations,oxygen evolution,and others,we highlight the latest achievements in the field.  相似文献   
9.
Evidence is mounting that UV-B and UV-A radiation affect skin differently in responses as diverse as erythema and elastosis. We found in this study that collagen metabolism was also differentially affected. Albino hairless mice were irradiated with two UV-A sources: (1) UVASUN 3000 (340-400 nm) for cumulative exposures of 4000 and 8000 J/cm2; (2) a xenon solar simulator filtered to provide full spectrum UV-A (320-400 nm) and long wavelength UV-A (335-400 nm) for cumulative exposures of 3000 and 4000 J/cm2 respectively. Collagen was isolated from other skin proteins by acid extraction, pepsin digestion and salt precipitation. Collagen types I and III were separated by interrupted gel electrophoresis. Ultraviolet-A rendered the collagen highly resistant to pepsin digestion. In age-matched controls only 16-18% of the total collagen remained insoluble, whereas in long wavelength UV-A-irradiated skins the insoluble fraction was as high as 87%. A dose response was noted at 4000 and 8000 J/cm2 as delivered by the UVASUN. Recovery of collagen from the pepsin soluble fraction was low in all UV-A groups and the amount of type III so small that determination of ratios of type III to I collagen was unreliable. These results suggest that chronic UV-A radiation may increase cross-linking of dermal collagen.  相似文献   
10.
Relatively little is known about the reaction chemistry of the human defense factor hypothiocyanite (OSCN(-)) and its conjugate acid hypothiocyanous acid (HOSCN), in part because of their instability in aqueous solutions. Herein we report that HOSCN/OSCN(-) can engage in a cascade of pH- and concentration-dependent comproportionation, disproportionation, and hydrolysis reactions that control its stability in water. On the basis of reaction kinetic, spectroscopic, and chromatographic methods, a detailed mechanism is proposed for the decomposition of HOSCN/OSCN(-) in the range of pH 4-7 to eventually give simple inorganic anions including CN(-), OCN(-), SCN(-), SO(3)(2-), and SO(4)(2-). Thiocyanogen ((SCN)(2)) is proposed to be a key intermediate in the hydrolysis; and the facile reaction of (SCN)(2) with OSCN(-) to give NCS(═O)SCN, a previously unknown reactive sulfur species, has been independently investigated. The mechanism of the aqueous decomposition of (SCN)(2) around pH 4 is also reported. The resulting mechanistic models for the decomposition of HOSCN and (SCN)(2) address previous empirical observations, including the facts that the presence of SCN(-) and/or (SCN)(2) decreases the stability of HOSCN/OSCN(-), that radioisotopic labeling provided evidence that under physiological conditions decomposing OSCN(-) is not in equilibrium with (SCN)(2) and SCN(-), and that the hydrolysis of (SCN)(2) near neutral pH does not produce OSCN(-). Accordingly, we demonstrate that, during the human peroxidase-catalyzed oxidation of SCN(-), (SCN)(2) cannot be the precursor of the OSCN(-) that is produced.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号