首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  国内免费   1篇
化学   32篇
晶体学   1篇
数学   3篇
物理学   8篇
  2023年   1篇
  2022年   11篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   4篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
Optical Review - To quantify the changes in optical properties of in vivo rat liver tissue, we applied diffuse reflectance spectroscopy (DRS) system using single-reflectance fiber probe during...  相似文献   
2.
A non-enzymatic impedimetric glucose sensor was fabricated based on the adsorption of gold nanoparticles (GNPs) onto conductive polyaniline (PANI)-modified glassy carbon electrode (GCE). The modified electrode (GCE/PANI/GNPs) was characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The determination of glucose concentration was based on the measurement of EIS with the mediation of electron transfer by ferricyanide ([Fe(CN)6]3?). The [Fe(CN)6]3? is reduced to ferrocyanide ([Fe(CN)6]4?), which in turn is oxidized at GCE/PANI/GNPs. An increase in the glucose concentration results in an increase in the diffusion current density of the [Fe(CN)6]4? oxidation, which corresponds to a decrease in the faradaic charge transfer resistance (R ct). A wide linear concentration range from 0.3 to 10 mM with a lower detection limit of 0.1 mM for glucose was obtained. The proposed sensor shows high sensitivity, good reproducibility, and stability. In addition, the sensor exhibits no interference from common interfering substances such as ascorbic acid, acetaminophen, and uric acid.  相似文献   
3.
Farzana Akter K  Chen Z  Smith L  Davey D  Naidu R 《Talanta》2005,68(2):406-415
The performance of capillary electrophoresis-ultraviolet detector (CE-UV), hydride generation-atomic absorption spectrometry (HG-AAS) and liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) have been compared for the speciation of arsenic (As) in groundwater samples. Two inorganic As species, arsenite (AsIII), arsenate (AsV) and one organo species dimethyl arsenic acid (DMA) were mainly considered for this study as these are known to be predominant in water. Under optimal analytical conditions, limits of detection (LD) ranging from 0.10 (AsIII, AsT) to 0.19 (DMA) μg/l for HG-AAS, 100 (AsIII, DMA) to 500 (AsV) μg/l for CE-UV and 0.1 (DMA, MMA) to 0.2 (AsIII, AsV) μg/l for LC-ICP-MS, allowed the determination of the above three species present in these samples. Results obtained by all the three methods are well correlated (r2 = 0.996*** for total As) with the precision of <5% R.S.D. except CE-UV. The effect of interfering ions (e.g. Fe2+, Fe3+, SO42− and Cl) commonly found in ground water on separation and estimation of As species were studied and corrected for. Spike recovery was tested and found to be 80-110% at 0.5 μg/l As standard except CE-UV where only 50% of the analyte was recovered. Comparison of these results shows that LC-ICP-MS is the best choice for routine analysis of As species in ground water samples.  相似文献   
4.
5.
A method based on ion chromatography (IC) and inductively coupled plasma MS (ICP-MS) was developed for the speciation of arsenic in water and soil extracts. An anion-exchange column (G3154A/101) was used to separate As(III), As(V), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA) with excellent resolution. Various ammonium salts, including NH4H2PO4, (NH4)2HPO4, (NH4)2CO3, and NH4HCO3, were examined as eluents to reduce matrix interference from chloride and to solve clogging problems. The best arsenic speciation was obtained within 9 min with excellent resolution and without interference from high chloride concentrations using an eluent containing 7.5 mM (NH4)2HPO4 at pH 7.9. The detection limits for the target arsenic species ranged from 0.1 to 0.4 microg/L with direct injection of sample without matrix elimination. The proposed method was effectively demonstrated by determining arsenic species in contaminated waters and soils of Bangladesh.  相似文献   
6.
Decacarbonyl--hydrido--1,8-2-quinoline-triosmium crystallizes in the triclinic space group P with a = 7.8551(6), b = 9.1283(8), c = 16.7915(8) Å, = 74.788(2), = 88.086(2), = 66.392(3)°, V = 1062.22(13)° Å3, T = 150 K, and Z = 2. The molecule consists of an Os3 triangle with the hydride and the heterocyclic ligand bridging the same Os—Os edge. The heterocyclic ligand is coordinated through the C(8) carbon and nitrogen atoms in a new -1,8-2-bonding mode. The Os—Os distances lie in the close range 2.8837(4)–2.9034(4) Å with an average value of 2.892(7) Å.  相似文献   
7.
The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15–55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 μg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 μg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.  相似文献   
8.
We demonstrate a facile efficient way to fabricate activated carbon nanosheets (ACNSs) consisting of hierarchical porous carbon materials. Simply heating banana leaves with K2CO3 produce ACNSs having a unique combination of macro-, meso- and micropores with a high specific surface area of ∼1459 m2 g−1. The effects of different electrolytes on the electrochemical supercapacitor performance and stability of the ACNSs are tested using a two-electrode system. The specific capacitance (Csp) values are 55, 114, and 190 F g−1 in aqueous 0.5 M sodium sulfate, organic 1 M tetraethylammonium tetrafluoroborate in acetonitrile, and pure ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) electrolytes, respectively. The ACNSs also shows the largest potential window of 3.0 V, the highest specific energy (59 Wh kg−1) and specific power (750 W kg−1) in [BMIM][PF6]. A mini-prototype device is prepared to demonstrate the practicality of the ACNSs.  相似文献   
9.
Extensive experimental, clinical, and epidemiological evidence has explained and proven that products of natural origin are significantly important in preventing and/or ameliorating various disorders, including different types of cancer that researchers are extremely focused on. Among these studies on natural active substances, one can distinguish the emphasis on resveratrol and its properties, especially the potential anticancer role. Resveratrol is a natural product proven for its therapeutic activity, with remarkable anti-inflammatory properties. Various other benefits/actions have also been reported, such as cardioprotective, anti-ageing, antioxidant, etc. and its rapid digestion/absorption as well. This review aims to collect and present the latest published studies on resveratrol and its impact on cancer prevention, molecular signals (especially p53 protein participation), and its therapeutic prospects. The most recent information regarding the healing action of resveratrol is presented and concentrated to create an updated database focused on this topic presented above.  相似文献   
10.
A facile two-step synthesis of ternary hetero-composites of ZnO, CuO, and single-walled carbon nanotubes (SWCNTs) was developed through a recrystallization process followed by annealing. A series of nanocomposites were prepared by varying the weight ratio of copper(II) acetate hydrate and zinc(II) acetate dihydrate and keeping the weight ratio of SWCNTs constant. The results revealed the formation of heterojunctions (ZnO–SWCNT–CuO, ZSC) of three crystal structures adjacent to each other, forming a ternary wurtzite-structured nanoparticles along with defects. Enhanced charge separation (electron-hole pairs), reduced band gap, defect-enhanced specific surface area, and promoted oxidation potential were key factors for the enhanced photocatalytic activity of the ternary nanocomposites. OH radicals were the main active species during dye degradation, and O2−• and h+ were also involved to a lesser extent. A type II heterojunction mechanism approach is proposed based on the charge carrier migration pattern. Among the synthesized nanocomposites, the sample prepared using copper(II) acetate hydrate and zinc(II) acetate dihydrate in a 1: 9 ratio (designated a ZSC3) showed the highest photocatalytic activity. ZSC3 achieved 99.2% photodecomposition of methylene blue in 20 min, 94.1% photodecomposition of Congo red in 60 min, and 99.6% photodecomposition of Rhodamine B in 40 min under simulated sunlight. Additionally, ZSC3 showed excellent reusability and stability, maintaining 96.7% of its activity even after five successive uses. Based on overall results, the ZSC sample was proposed as an excellent candidate for water purification applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号