首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   1篇
化学   60篇
数学   1篇
物理学   21篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The hydrogen tautomerism in the hydrido carbonyl cluster compound of rhenium [H4Re4(CO)15](NEt4)2 has been studied by analysis of the PMR spectra at different temperatures.  相似文献   
5.
A direct minimization method previously presented by the authors is applied here to biconfigurational wave functions. A very moderate increasing in the time by iteration with respect to the one-determinant calculation and good convergence properties have been found. So qualitatively correct studies on singlet systems with strong biradical character can be performed with a cost similar to that required by Hartree-Fock calculations.  相似文献   
6.
Density functional theory has been used to investigate structural, electronic and reactivity properties of complexes related to the peroxo forms of vanadium haloperoxidases (VHPO). In particular, the reactivity of the cofactor as a function of protonation state and environment, which are two factors thought to be crucial in modulating the activity of the enzyme, has been examined. In full agreement with experimental data, results highlight the role of protonation in the activation of the peroxo-vanadium complexes and show that the oxo-transfer step involves the unprotonated axial peroxo oxygen atom, which is easily accessible to substrates in the peroxo form of the enzyme. The role of Lys353, which in the X-ray structure of the peroxide-bound form of vanadium chloroperoxidase is hydrogen bonded to the equatorial oxygen atom of the peroxo group, has been also explored. It is concluded that Lys353 can play a role similar to a H+ in the activation of the peroxo form of the cofactor.  相似文献   
7.
General rules which govern electronic and geometric structures of small clusters are formulated, and their validity is documented with the results of the MRD - CI investigations for Li n , BeLi k , Be l (n=2?14,k=2?6,l=2?13) as well as on IIa and IVa tetramers. The MRD - CI results are compared with investigations performed with other methods.  相似文献   
8.
The core-valence correlation potential has been derived for Na and K employing atomic calculations which make use of the density functional formula worked out by Lee, Yang and Parr based on Colle-Salvetti approach. The numerical potential is fitted with a small number of Gaussians leading to a very simple expression for an one-electron corevalence correlation operator? cv . The core-valence correlation corrections can be computed by applying? cv on a quite general class of wavefunctions. Applications of the? cv operator within the framework of valence-electron-only calculations using effective Hamiltonians are presented for Na and K atoms, for Na2, K2, NaK and their cations. Almost all the corrections calculated for the physical properties due to the core-valence correlation lead to results which are in good agreement with those obtained from much more sophisticated treatments and experimental data.  相似文献   
9.
Hydrogenases catalyze the reversible oxidation of dihydrogen to protons and electrons. The structures of two Fe-only hydrogenases have been recently reported [Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853-1858. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, E. C.; Fontecilla-Camps, J. C. Structure 1999, 7, 13-23], showing that the likely site of dihydrogen activation is the so-called [2Fe](H) cluster, where each Fe ion is coordinated by CO and CN(-) ligands and the two metals are bridged by a chelating S-X(3)-S ligand. Moreover, the presence of a water molecule coordinated to the distal Fe2 center suggested that the Fe2 atom could be a suitable site for binding and activation of H(2). In this contribution, we report a density functional theory investigation of the structural and electronic properties of complexes derived from the [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) species, which is related to the [2Fe](H) cluster observed in Fe-only hydrogenases. Our results show that the structure of the [2Fe](H) cluster observed in the enzyme does not correspond to a stable form of the isolated cluster, in the absence of the protein. As a consequence, the reactivity of [(CO)(CH(3)S)(CN)Fe(II)(mu-PDT)Fe(II)(CO)(2)(CN)](-1) derivatives in solution may be expected to be quite different from that of the active site of Fe-only hydrogenases. In fact, the most favorable path for H(2) activation involves the two metal atoms and one of the bridging S atoms and is associated with a very low activation energy (5.3 kcal mol(-1)). The relevance of these observations for the catalytic properties of Fe-only hydrogenases is discussed in light of available experimental and theoretical data.  相似文献   
10.
Density functional theory has been used to investigate complexes related to the [2Fe](H) subcluster of [Fe]-hydrogenases. In particular, the effects on structural and electronic properties of redox state and ligands with different sigma-donor pi-acceptor character, which replace the cysteine residue coordinated to the [2Fe](H) subcluster in the enzyme, have been investigated. Results show that the structural and electronic properties of fully reduced Fe(I)Fe(I) complexes are strongly affected by the nature of the ligand L, and in particular, a progressive rotation of the Fe(d)(CO)(2)(CN) group, with a CO ligand moving from a terminal to a semibridged position, is observed going from the softest to the hardest ligand. For the partially oxidized Fe(I)Fe(II) complexes, two isomers of similar stability, characterized either by a CO ligand in a terminal or bridged position, have been observed. The switching between the two forms is associated with a spin and charge transfer between the two iron atoms, a feature that could be relevant in the catalytic mechanism of dihydrogen activation. The structure of the fully oxidized Fe(II)Fe(II) models is extremely dependent on the nature of the L ligand; one CO group coordinated to Fe(d) switches from terminal to bridging position going from complexes characterized by neutral to anionic L ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号