首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58842篇
  免费   15848篇
  国内免费   135篇
化学   61585篇
晶体学   328篇
力学   2879篇
综合类   1篇
数学   4190篇
物理学   5842篇
  2024年   376篇
  2023年   4131篇
  2022年   1571篇
  2021年   2598篇
  2020年   4733篇
  2019年   2461篇
  2018年   2450篇
  2017年   730篇
  2016年   5809篇
  2015年   5706篇
  2014年   5222篇
  2013年   5731篇
  2012年   4008篇
  2011年   2008篇
  2010年   4046篇
  2009年   3958篇
  2008年   1845篇
  2007年   1527篇
  2006年   898篇
  2005年   732篇
  2004年   597篇
  2003年   511篇
  2002年   433篇
  2001年   544篇
  2000年   460篇
  1999年   305篇
  1998年   253篇
  1997年   296篇
  1996年   312篇
  1995年   308篇
  1994年   247篇
  1993年   333篇
  1992年   231篇
  1991年   205篇
  1984年   202篇
  1982年   217篇
  1981年   229篇
  1980年   258篇
  1979年   227篇
  1978年   244篇
  1977年   354篇
  1976年   403篇
  1975年   497篇
  1974年   513篇
  1973年   318篇
  1972年   385篇
  1971年   372篇
  1970年   552篇
  1969年   424篇
  1968年   463篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
2.
3.
An in situ ultrasonic spectroscopy technique was used to study the ring‐opening metathesis polymerization of dicyclopentadiene catalyzed by bis(tricyclohexylphosphine)benzylidene ruthenium dichloride. A reaction cell employing a flexible poly(ethylene terephthalate) window for pulse echo ultrasonic spectroscopy was used to monitor the polymerization. The changes in the density, wave speed, acoustic modulus, and attenuation were all simultaneously monitored. In comparison with Fourier transform infrared (FTIR) spectroscopy data, the changes in the density, velocity, and modulus only accurately measured the rate constant for the metathesis of the cyclopentyl unsaturation. The ultrasonic values were within 6% of the values determined by FTIR. The activation energy for metathesis of the cyclopentyl unsaturation was 84 kJ mol?1, following first‐order kinetics. Rate constants for the polymerization of the norbornyl unsaturation could not be determined by ultrasound. The gel point, vitrification, and qualitative information about the reaction rate could be determined from the change in the attenuation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1323–1333, 2003  相似文献   
4.
A Barbier‐type regioselective propargylation of aldehydes and ketones with (3‐bromobut‐1‐ynyl)trimethylsilane has been achieved using reactive barium as a low‐valent metal in THF. Especially in the case of ketones, the corresponding homopropargylic alcohols form almost exclusively. In the reaction of α,β‐unsaturated carbonyl compounds, only 1,2‐adducts have been observed. This method is also applicable to propargylation of imines, and the corresponding homopropargylic amines are obtained regiospecifically in good yields with diastereomeric ratios of up to 87:13.  相似文献   
5.
Silica@copper (SiO2@Cu) core–shell nanoparticles were synthesized and well characterized by XRD, TEM, AFM, XPS, UV/Vis, TGA–MS, and ICP–AES techniques. The synthesized SiO2@Cu core–shell nanoparticles were employed as catalysts for the conjugate addition of amines to α,β‐unsaturated compounds in water to obtain β‐amino carbonyl compounds in excellent yields in shorter reaction times. Furthermore, the catalyst works well for hetero‐Michael addition reactions of heteroatom nucleophiles such as thiols to α,β‐unsaturated compounds. As the reaction is performed in water, it allows for easy recycling of the catalyst with consistent activity.  相似文献   
6.
7.
We report on the shape transition from InAs quantum dashes to quantum dots (QDs) on lattice-matched GaInAsP on InP(3 1 1)A substrates. InAs quantum dashes develop during chemical-beam epitaxy of 3.2 monolayers InAs, which transform into round InAs QDs by introducing a growth interruption without arsenic flux after InAs deposition. The shape transition is solely attributed to surface properties, i.e., increase of the surface energy and symmetry under arsenic deficient conditions. The round QD shape is maintained during subsequent GaInAsP overgrowth because the reversed shape transition from dot to dash is kinetically hindered by the decreased ad-atom diffusion under arsenic flux.  相似文献   
8.
Supramolecular block‐random copolymers containing [Ir(terpy)2]3+ in the side chain were synthesized via postfunctionalization of a P(S‐b‐ACterpy) block copolymer. Absorbance and emission spectra compared to a model compound show that the polymer backbone has a minor effect on the polymer absorbance but produces a larger shift for the phosphorescence signals to higher wavelength. Dynamic light scattering of the metal complex containing copolymer studied in various solvents showed monomodal aggregation with decreasing aggregate size as the solvent dielectric constant increased. The copolymer precursor P(S‐b‐ACterpy) shows multimodal aggregation in different solvents with the major population consisting of single chains. This difference in behavior between the two polymers is attributed to the electrolytic nature of the complex and the amphiphilicity induced by the charged metal complex. Supramolecular copolymers like these will continue to have interesting self‐organizational properties and may find applications in multicomponent systems for photoinduced charge separation processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1109–1121, 2007  相似文献   
9.
 Numerical studies were conducted to investigate the natural convection heat transfer around a uniformly heated thin plate with arbitrary inclination in an infinite space. The numerical approach was based on the finite volume technique with a nonstaggered grid arrangement. For handling the pressure–velocity coupling the SIMPLE-algorithm was used. QUICK scheme and first order upwind scheme were employed for discretization of the momentum and energy convective terms respectively. Plate width and heating rate were used to vary the modified Rayleigh number over the range of 4.8×106 to 1.87×108. Local and average heat transfer characteristics were compared with regarding to the inclination angle. The empirical expressions for local and average Nusselt number were correlated. It has been found that for inclination angle less than 10, the flow and heat transfer characteristics are complicated and the average Nusselt number can not be correlated by one equation while for inclination angle larger than 10, the average Nusselt number can be correlated into an elegant correlation. Received on 18 April 2001 / Published online: 29 November 2001  相似文献   
10.
The blends composed of polyamide 6 (PA6) and polyamide 66 (PA66) were obtained using two different preparation methods, one of which was the melt‐mixing through a twin‐screw extruder and the subsequent injection molding; and the other, the in situ blending through anionic polymerization of ε‐caprolactam in the presence of PA66. For the former, there existed a remarkable improvement in toughness but a drastic drop in strength and modulus; however, for the latter, a reverse but less significant trend of mechanical properties change appeared. Various characterizations were conducted, including the analyses of crystalline morphology, crystallographic form, and crystallization and melting behaviors using polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC), respectively; observation of morphology of fractured surface with scanning electron microscope (SEM); measurement of glass transition through dynamic mechanical analysis (DMA); and the intermolecular interaction as well as the interchange reaction between the two components by Fourier transform infrared spectrometry (FT‐IR) and 13C solution NMR. The presence and absence of interchange reaction was verified for the in situ and melt‐mixed blends, respectively. It is believed that the transreaction resulted in a drop in glass transition temperature (Tg) for the in situ blends, contrary to an increase of Tg with increasing PA66 content for the melt‐mixed ones. And the two kinds of fabrication methods led to significant differences in the crystallographic form, spherulite size and crystalline content and perfection as well. Accordingly, it is attempted to explain the reasons for the opposite trends of changes in the mechanical properties for these two blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1176–1186, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号