首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49824篇
  免费   15743篇
  国内免费   76篇
化学   58429篇
晶体学   65篇
力学   2116篇
数学   3260篇
物理学   1773篇
  2024年   373篇
  2023年   4103篇
  2022年   1480篇
  2021年   2522篇
  2020年   4695篇
  2019年   2377篇
  2018年   2306篇
  2017年   662篇
  2016年   5697篇
  2015年   5618篇
  2014年   5072篇
  2013年   5285篇
  2012年   3465篇
  2011年   1306篇
  2010年   3538篇
  2009年   3486篇
  2008年   1260篇
  2007年   952篇
  2006年   310篇
  2005年   278篇
  2004年   270篇
  2003年   182篇
  2002年   205篇
  2001年   130篇
  1997年   136篇
  1996年   138篇
  1995年   183篇
  1993年   250篇
  1992年   143篇
  1989年   126篇
  1988年   155篇
  1987年   131篇
  1985年   136篇
  1984年   146篇
  1983年   134篇
  1982年   156篇
  1981年   203篇
  1980年   234篇
  1979年   218篇
  1978年   216篇
  1977年   354篇
  1976年   395篇
  1975年   483篇
  1974年   494篇
  1973年   310篇
  1972年   379篇
  1971年   372篇
  1970年   560篇
  1969年   417篇
  1968年   465篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
2.
3.
A Barbier‐type regioselective propargylation of aldehydes and ketones with (3‐bromobut‐1‐ynyl)trimethylsilane has been achieved using reactive barium as a low‐valent metal in THF. Especially in the case of ketones, the corresponding homopropargylic alcohols form almost exclusively. In the reaction of α,β‐unsaturated carbonyl compounds, only 1,2‐adducts have been observed. This method is also applicable to propargylation of imines, and the corresponding homopropargylic amines are obtained regiospecifically in good yields with diastereomeric ratios of up to 87:13.  相似文献   
4.
Silica@copper (SiO2@Cu) core–shell nanoparticles were synthesized and well characterized by XRD, TEM, AFM, XPS, UV/Vis, TGA–MS, and ICP–AES techniques. The synthesized SiO2@Cu core–shell nanoparticles were employed as catalysts for the conjugate addition of amines to α,β‐unsaturated compounds in water to obtain β‐amino carbonyl compounds in excellent yields in shorter reaction times. Furthermore, the catalyst works well for hetero‐Michael addition reactions of heteroatom nucleophiles such as thiols to α,β‐unsaturated compounds. As the reaction is performed in water, it allows for easy recycling of the catalyst with consistent activity.  相似文献   
5.
6.
Hydroxynitrile lyases catalyze the reversible cleavage of α-cyanohydrins to yield hydrocyanic acid and the corresponding aldehyde or ketone. Besides its biological interest, this class of enzymes is also of relevance in industrial biocatalysis for the enantioselective condensation of HCN with a variety of aldehydes and ketones. Several distinctly different types of hydroxynitrile lyases (HNLs) are known, which must have originated through convergent evolution from different ancestral proteins. Three-dimensional structural data are known for three classes of hydroxynitrile lyases. Insights into the reaction mechanisms emerged from a combination of structural, enzyme kinetic, spectroscopic, and molecular modeling data. For all three types of HNLs, mechanisms involving acid–base catalysis were proposed. In members belonging to the α,β-hydrolase type, the amino acid residues of the catalytic triad presumably act as general acid/base, whereas for flavine adenine dinucleotide (FAD)-dependent HNLs a single histidine residue fulfills this function. In the third type of HNL—which is related to carboxypeptidase—acid–base catalysis involves the carboxylate of the C-terminal residue. The catalytic relevance of a positive electrostatic potential in the active site was suggested in some of the mechanistic proposals. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 479–486, 2004  相似文献   
7.
The field of medicinal inorganic chemistry is rapidly advancing. In particular organometallic complexes have much potential as therapeutic and diagnostic agents. The carbon‐bound and other ligands allow the thermodynamic and kinetic reactivity of the metal ion to be controlled and also provide a scaffold for functionalization. The establishment of structure–activity relationships and elucidation of the speciation of complexes under conditions relevant to drug testing and formulation are crucial for the further development of promising medicinal applications of organometallic complexes. Specific examples involving the design of ruthenium and osmium arene complexes as anticancer agents are discussed.  相似文献   
8.
In this study, a genetically encoded bioluminescent indicator for ERK2 dimer was developed with the split Renilla luciferase complementation method, in which the formation of ERK2 dimer induces a spontaneous emission of bioluminescence in living cells. In response to extracellular stimuli, such as epidermal growth factor (EGF) or 17β‐estradiol (E2), extracellular signal‐regulated kinase 2 (ERK2) is phosphorylated by its upstream kinase MEK, and also phosphorylates its substrates in various regions of the cell, including the nucleus. Phosphorylated ERK2 is led to form its dimer, thereby transporting itself into the nucleus. We demonstrated with the indicator that stimulation with EGF or E2 induces the formation of ERK2 dimer in living MCF‐7 cells. The dynamics of this dimer formation was examined and discussed.  相似文献   
9.
The notion of weak attractive ligand–polymer interactions is introduced, and its potential application, importance, and conceptual links with “cooperative” ligand–substrate interactions are discussed. Synthetic models of weak attractive ligand–polymer interactions are described, in which intramolecular weak C? H???F? C interactions (the existence of which remains contentious) have been detected by NMR spectroscopy and neutron and X‐ray diffraction experiments. These C? H???F? C interactions carry important implications for the design of catalysts for olefin polymerization, because they provide support for the practical feasibility of ortho‐F???Hβ ligand–polymer contacts proposed for living Group 4 fluorinated phenoxyimine catalysts. The notion of weak attractive noncovalent interactions between an “active” ligand and the growing polymer chain is a novel concept in polyolefin catalysis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号