首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   601篇
  免费   31篇
  国内免费   4篇
化学   433篇
晶体学   11篇
力学   12篇
数学   55篇
物理学   125篇
  2024年   4篇
  2023年   9篇
  2022年   35篇
  2021年   23篇
  2020年   21篇
  2019年   25篇
  2018年   11篇
  2017年   11篇
  2016年   25篇
  2015年   15篇
  2014年   32篇
  2013年   47篇
  2012年   53篇
  2011年   65篇
  2010年   33篇
  2009年   28篇
  2008年   26篇
  2007年   39篇
  2006年   35篇
  2005年   20篇
  2004年   15篇
  2003年   8篇
  2002年   9篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1984年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1969年   1篇
排序方式: 共有636条查询结果,搜索用时 15 毫秒
1.

Background  

The adenine nucleotide translocator 1 (Ant1) is an inner mitochondrial membrane protein involved with energy mobilization during oxidative phosphorylation. We recently showed that rodent Ant1 is upregulated by transforming growth factor-beta (TGF-β) in reactive astrocytes following CNS injury. In the present study, we describe the molecular mechanisms by which TGF-β1 regulates Ant1 gene expression in cultured primary rodent astrocytes.  相似文献   
2.
We study the long-time relaxation of magnetization in a disordered linear chain of Ising spins from an initially aligned state. The coupling constants are ferromagnetic and nearest-neighbor only, taking valuesJ 0 andJ 1 with probabilitiesp and 1–p, respectively. The time evolution of the system is governed by the Glauber master equation. It is shown that for large timest, the magnetizationM(t) varies as [exp(–0 t](t), where 0 is a function of the stronger bond strengthJ 0 only, and (t) decreases slower than an exponential. For very long times, we find that ln (t) varies as –t 1/3. For low enough temperatures, there is an intermediate time regime when ln (t) varies as –t 1/2. The results can be extended to more general probability distributions of ferromagnetic coupling constants, assuming thatM(t) can only increase if any bond in the chain is strengthened. If the coupling constants have a continuous distribution in which the probability density varies as a power law near some maximum valueJ 0, we find that ln (t) varies as –t 1/3(lnt)2/3 for large times.  相似文献   
3.
Spirulina is a kind of blue-green algae (BGA) that is multicellular, filamentous, and prokaryotic. It is also known as a cyanobacterium. It is classified within the phylum known as blue-green algae. Despite the fact that it includes a high concentration of nutrients, such as proteins, vitamins, minerals, and fatty acids—in particular, the necessary omega-3 fatty acids and omega-6 fatty acids—the percentage of total fat and cholesterol that can be found in these algae is substantially lower when compared to other food sources. This is the case even if the percentage of total fat that can be found in these algae is also significantly lower. In addition to this, spirulina has a high concentration of bioactive compounds, such as phenols, phycocyanin pigment, and polysaccharides, which all take part in a number of biological activities, such as antioxidant and anti-inflammatory activity. As a result of this, spirulina has found its way into the formulation of a great number of medicinal foods, functional foods, and nutritional supplements. Therefore, this article makes an effort to shed light on spirulina, its nutritional value as a result of its chemical composition, and its applications to some food product formulations, such as dairy products, snacks, cookies, and pasta, that are necessary at an industrial level in the food industry all over the world. In addition, this article supports the idea of incorporating it into the food sector, both from a nutritional and health perspective, as it offers numerous advantages.  相似文献   
4.
Ageratum conyzoides L. (Family—Asteraceae) is an annual aromatic invasive herb, mainly distributed over the tropical and subtropical regions of the world. It owns a reputed history of indigenous remedial uses, including as a wound dressing, an antimicrobial, and mouthwash as well as in treatment of dysentery, diarrhea, skin diseases, etc. In this review, the core idea is to present the antifungal potential of the selected medicinal plant and its secondary metabolites against different fungal pathogens. Additionally, toxicological studies (safety profile) conducted on the amazing plant A. conyzoides L. are discussed for the possible clinical development of this medicinal herb. Articles available from 2000 to 2020 were reviewed in detail to exhibit recent appraisals of the antifungal properties of A. conyzoides. Efforts were aimed at delivering evidences for the medicinal application of A. conyzoides by using globally recognized scientific search engines and databases so that an efficient approach for filling the lacunae in the research and development of antifungal drugs can be adopted. After analyzing the literature, it can be reported that the selected medicinal plant effectively suppressed the growth of numerous fungal species, such as Aspergillus, Alternaria, Candida, Fusarium, Phytophthora, and Pythium, owing to the presence of various secondary metabolites, particularly chromenes, terpenoids, flavonoids and coumarins. The possible mechanism of action of different secondary metabolites of the plant against fungal pathogens is also discussed briefly. However, it was found that only a few studies have been performed to demonstrate the plant’s dosage and safety profile in humans. Considered all together, A. conyzoides extract and its constituents may act as a promising biosource for the development of effective antifungal formulations for clinical use. However, in order to establish safety and efficacy, additional scientific research is required to explore chronic toxicological effects of ageratum, to determine the probability of interactions when used with different herbs, and to identify safe dosage. The particulars presented here not only bridge this gap but also furnish future research strategies for the investigators in microbiology, ethno-pharmacology, and drug discovery.  相似文献   
5.
Crystallography Reports - The crystal structure of the title compound is determined by single crystal X-ray structure analysis. The structure was solved by direct method and refined to a final...  相似文献   
6.
The title compounds were synthesized from 3-[bis(2-hydroxyethyl)amino]quinolin-2(1H)-one 11a and 3-[bis(2-hydroxyethyl)amino]pyridin-2(1H)-one 18 respectively. The preparation involved a tandem chlorination/cyclization reaction.  相似文献   
7.
Long-term visualization of lysosomal properties is extremely crucial to evaluate diseases related to their dysfunction. However, many of the reported lysotrackers are less conducive to imaging lysosomes precisely because they suffer from fluorescence quenching and other inherent drawbacks such as pH-sensitivity, polarity insensitivity, water insolubility, slow diffusibility, and poor photostability. To overcome these limitations, we have utilized an alkyl chain length engineering strategy and synthesized a series of lysosome targeting fluorescent derivatives namely NIMCs by attaching a morpholine moiety at the peri position of the 1,8-naphthalimide (NI) ring through varying alkyl spacers between morpholine and 1,8-naphthalimide. The structural and optical properties of the synthesized NIMCs were explored by 1H-NMR, single-crystal X-ray diffraction, UV-Vis, and fluorescence spectroscopy. Afterward, optical spectroscopic measurements were carefully performed to identify a pH-tolerant, polarity sensitive, and highly photostable fluoroprobes for further live-cell imaging applications. NIMC6 displayed excellent pH-tolerant and polarity-sensitive properties. Consequently, all NIMCs were employed in kidney fibroblast cells (BHK-21) to investigate their applicability for lysosome targeting and probing lysosomal micropolarity. Interestingly, a switching of localization from lysosomes to the endoplasmic reticulum (ER) was also achieved by controlling the linker length and this phenomenon was subsequently applied in determining ER micropolarity. Additionally, the selected probe NIMC6 was also employed in BHK-21 cells for 3-D spheroid imaging and in Caenorhabditis elegans (C. elegans) for in vivo imaging, to evaluate its efficacy for imaging animal models.

A series naphthalimide-based fluorophores were designed by alkyl spacer length engineering to discover a pH-tolerant lysosomal marker. This approach also allows to probe lysosome-related organelles in C. elegans and communication between organelles.  相似文献   
8.
This study presents a custom‐made in situ gelling polymeric precursor for cell encapsulation. Composed of poly((2‐hydroxyethyl)methacrylate‐co‐(3‐aminopropyl)methacrylamide) (P(HEMA‐co‐APM) mother backbone and RGD‐mimicking poly(amidoamine) (PAA) moiteis, the comb‐like structured polymeric precursor is tailored to gather the advantages of the two families of synthetic polymers, i.e., the good mechanical integrity of PHEMA‐based polymers and the biocompatibility and biodegradability of PAAs. The role of P(HEMA‐co‐APM) in the regulation of the chemico‐physical properties of P(HEMA‐co‐APM)/PAA hydrogels is thoroughly investigated. On the basis of obtained results, namely the capability of maintaining vital NIH3T3 cell line in vitro for 2 d in a 3D cell culture, the in vivo biocompatibility in murine model for 16 d, and the ability of finely tuning mechanical properties and degradation kinetics, it can be assessed that P(HEMA‐co‐APM)/PAAs offer a cost‐effective valid alternative to the so far studied natural polymer‐based systems for cell encapsulation.

  相似文献   

9.
10.
The enantiomeric resolution of (+/-)-ibuprofen into its enantiomers was achieved by TLC on silica gel plate using optically pure (-)-brucine as a chiral selector and acetonitrile-methanol (5:1, v/v) as the solvent system. Spots were located in an iodine chamber. The detection limit was 4.9 microg. The effect of concentration of the chiral selector, temperature and pH on resolution has been studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号