首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1960篇
  免费   86篇
  国内免费   3篇
化学   1696篇
晶体学   11篇
力学   17篇
数学   63篇
物理学   262篇
  2024年   3篇
  2023年   18篇
  2022年   20篇
  2021年   28篇
  2020年   47篇
  2019年   40篇
  2018年   28篇
  2017年   18篇
  2016年   46篇
  2015年   57篇
  2014年   75篇
  2013年   96篇
  2012年   161篇
  2011年   154篇
  2010年   82篇
  2009年   89篇
  2008年   162篇
  2007年   147篇
  2006年   152篇
  2005年   143篇
  2004年   106篇
  2003年   70篇
  2002年   49篇
  2001年   27篇
  2000年   17篇
  1999年   13篇
  1998年   6篇
  1997年   7篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   16篇
  1989年   7篇
  1988年   15篇
  1987年   4篇
  1986年   9篇
  1985年   15篇
  1984年   7篇
  1983年   7篇
  1982年   3篇
  1981年   13篇
  1980年   14篇
  1979年   12篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1975年   8篇
  1974年   7篇
排序方式: 共有2049条查询结果,搜索用时 15 毫秒
1.
We have studied the individual adsorption of Mn and Bi, and their coadsorption on Cu(0 0 1) by low-energy electron diffraction (LEED). For Mn, we have determined the c(2 × 2) structure formed at 300 K, whose structure had been determined by several methods. We reconfirmed by a tensor LEED analysis that it is a substitutional structure and that a previously reported large corrugation (0.30 Å) between substitutional Mn and remaining surface Cu atoms coincides perfectly with the present value. In the individual adsorption of Bi, we have found a c(4 × 2) structure, which is formed by cooling below ∼250 K a surface prepared by Bi deposition of ∼0.25 ML coverage at 300 K where streaky half-order LEED spots appear. The c(4 × 2) structure has been determined by the tensor LEED analysis at 130 K and it is a substitutional structure. In the coadsorption, we found a c(6 × 4) structure, which has been determined by the tensor LEED analysis. It is very similar to the previously determined structure of the c(6 × 4) formed by coadsorption of Mg and Bi, and embedded MnBi4 clusters are arranged in the top Cu layer instead of MgBi4. Large lateral displacements of Bi atoms in the c(6 × 4)-(Mn + Bi) suggest that the Mn atoms undergo the size-enhancement caused by their large magnetic moment.  相似文献   
2.
The turbulent flow in a compound meandering channel with a rectangular cross section is one of the most complicated turbulent flows, because the flow behaviour is influenced by several kinds of forces, including centrifugal forces, pressure‐driven forces and shear stresses generated by momentum transfer between the main channel and the flood plain. Numerical analysis has been performed for the fully developed turbulent flow in a compound meandering open‐channel flow using an algebraic Reynolds stress model. The boundary‐fitted coordinate system is introduced as a method for coordinate transformation in order to set the boundary conditions along the complicated shape of the meandering open channel. The turbulence model consists of transport equations for turbulent energy and dissipation, in conjunction with an algebraic stress model based on the Reynolds stress transport equations. With reference to the pressure–strain term, we have made use of a modified pressure–strain term. The boundary condition of the fluctuating vertical velocity is set to zero not only for the free surface, but also for computational grid points next to the free surface, because experimental results have shown that the fluctuating vertical velocity approaches zero near the free surface. In order to examine the validity of the present numerical method and the turbulent model, the calculated results are compared with experimental data measured by laser Doppler anemometer. In addition, the compound meandering open channel is clarified somewhat based on the calculated results. As a result of the analysis, the present algebraic Reynolds stress model is shown to be able to reasonably predict the turbulent flow in a compound meandering open channel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
3.
A two‐stage co‐oligomerization of the oligomers initially formed from an equimolar mixture of isophthalic acid (IPA) and terephthalic acid (TPA) and 2,2‐bis(4‐hydroxyphenyl)propane (BPA, 50 mol %) with bisphenols (BPs, 20 mol %) was carried out using a tosyl chloride/dimethylformamide/pyridine condensing agent. The distributions of the resulting oligomers (nx‐mers), which were quenched with methanol, were determined by a combination of gel permeation chromatography (GPC) and NMR. These distributions (presented by molar percentage) were conveniently calculated with the equation nx (mol %) = nx (% mol by GPC) × n0 (mol % by NMR)/n0 (% mol by GPC), where nx (% mol) = nx (wt % by GPC)/its molecular weight. The results showed the distributions of the preformed IPA/TPA‐BPA oligomers to be in fairly good accord with those obtained directly from GPC and to be supported by the NMR results. The calculation was applied to the co‐oligomers prepared up to a reaction of 0.7, at which there was an increase in the number of higher oligomers indivisible by GPC and the distributions could no longer be determined by molar percentage. The calculated distributions are discussed in relation to the results of copolycondensation. The sequence distributions in the resulting co‐oligomers, which were also examined by NMR, are compared with those in the copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 44–51, 2004  相似文献   
4.
The solution polyesterification of dicarboxylic acids in pyridine, the activated intermediates of which were difficult to dissolve in tosyl chloride/dimethylformamide/pyridine, was investigated in the presence of lithium chloride. The solubility of the activated dicarboxylic acids was largely improved by the presence of the salt, and the polycondensation with bisphenols was greatly facilitated. The salt was more effectively added to a pyridine solution of dicarboxylic acids than to the activated dicarboxylic acids in pyridine. The favorable additive effect on the improved solubility was attributed to a lowered degree of association of the activated dicarboxylic acids, which led to distributions of the resulting oligomers from bisphenols at an earlier stage closer to the theoretical ones and yielded better polycondensation results. The reaction, which proceeded through favorable distributions of the co‐oligomers, produced copolymers of higher inherent viscosities and slightly block sequence distributions determined by NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2725–2733, 2004  相似文献   
5.
A simple method to label oligosaccharides with a multifunctional fluorescent group was developed. Oligosaccharides were quantitatively labeled at their reducing termini with pyrene butanoic acid hydrazide. The pyrene-labeled oligosaccharides were successfully applied to fluorescence polarization measurements and ELISA at picomole quantity, which was not previously reached by other procedures. This labeling method should prove to be useful in a variety of aspects in glycobiology.  相似文献   
6.
7.
Aryl isocyanides bearing free‐base and metallo‐porphyrins were prepared and polymerized with a Pd–Pt μ‐ethynediyl complex as the initiator to give polymers with narrow polydispersity indices. The molecular weights of the resulting polymers were precisely controlled by the initial feed ratio of the porphyrin monomer to the initiator. The UV–VIS spectra suggested that the porphyrin pendants are regularly arranged to form stacked columns. Metallo‐porphyrin polymers were also prepared by reacting free‐base porphyrin polymers with metal salts. The successive reactions of free‐base and zinc‐porphyrin monomers resulted in the formation of diblock polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 585–595, 2006  相似文献   
8.
We report the stereocontrol of diene polymers by the topochemical polymerization of alkoxy-substituted benzyl muconates in the solid state. A monomer stacking structure is controlled by the weak intermolecular interactions in the monomer crystals, depending on the structure and position of the alkoxy-substituent. The translational and alternating types of molecular stacking structures in a column provide diisotactic and disyndiotactic polymers, respectively, by the solid-state polymerization under UV and γ-ray irradiation. On the other hand, the meso and racemo structures of the resulting polymers are determined by the molecular symmetry of the used muconate monomers. The various substituted benzyl ester polymers are transformed into the same ethyl ester polymers with the four types of tacticities. The structure and crystallization behavior of the substituted benzyl ester polymers as well as the ethyl ester polymers have been revealed in detail. We clarify the effects of the tacticity on the crystallization property of the stereoregular polymuconates. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4952–4965, 2006  相似文献   
9.
An investigation was made of the gelation of dimethacrylate‐type crosslinking agents in view of an application for separation media. The study mainly centered on a crosslinking agent, glycerol dimethacrylate (GDMA), which is relatively hydrophilic because of a hydroxyl group in the middle of its structure. The gelation of GDMA was compared with that of other hydrophobic crosslinking agents such as ethylene glycol dimethacrylate and 1,6‐hexanediol dimethacrylate. The diluents used in the study were toluene, toluene with methanol, and cyclohexanol. The gelation was observed in real time with a charge coupled device camera and dynamic light scattering (DLS). Also, the separated dry gels were extensively characterized with scanning electron microscopy, BET (N2 absorption and desorption isotherm), and Fourier transform infrared. DLS analysis showed a stronger molecular interaction of GDMA gelation in toluene, whereas this interaction was much weaker in an alcoholic solvent such as toluene with methanol or cyclohexanol. This indicated that GDMA gelation might proceed through hydrogen bonding as well as a crosslinking reaction of vinyl groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 949–958, 2006  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号