首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学   31篇
力学   1篇
物理学   3篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
  1991年   1篇
  1985年   2篇
  1979年   1篇
排序方式: 共有35条查询结果,搜索用时 882 毫秒
1.
The magnetic susceptibility of UO2ThO2 solid solutions has been measured from room temperature to 2.0 K. The magnetic moment and the Weiss constant have been determined in the temperature range in which the Curie-Weiss law holds. For the solid solutions showing antiferromagnetic transition, the Néel temperature has been also determined. These values decrease monotonically with increasing ThO2 concentration. The results were analyzed using the molecular field theory which includes the interaction between next-nearest neighbor spins. The interactions between nearest neighbor spins, J1, and those between next-nearest neighbor spins, J2, both decrease with increasing ThO2 concentration. The change of J1 with composition is larger than that of J2. The effect of magnetic dilution with ThO2 is considered to be stronger on the interaction between nearest neighbor uranium ions.  相似文献   
2.
Zircon-type compounds LnCrO4 (Ln=Nd, Sm, and Dy) were prepared. Their precise crystal structures at room temperature were determined from X-ray diffraction measurements. These compounds have a tetragonal system with space group I41/amd. Magnetic susceptibility and specific heat measurements have been performed for all the compounds in the temperature range between 1.8 and 300 K. For NdCrO4, an antiferromagnetic transition was found at 25.2 K. SmCrO4 and DyCrO4 show magnetic transitions at 15.0 and 22.8 K, respectively. In addition, structural phase transitions were observed at 58.5 and 31.2 K, respectively. For DyCrO4, the crystal structure below the transition temperature was determined by low-temperature powder X-ray diffraction measurements to be orthorhombic with space group Imma.  相似文献   
3.
Synthesis, structures, and magnetic properties of ternary rare earth oxides ALnO2 (A=Cu or Ag; Ln=rare earths) have been investigated. CuLnO2 (Ln=La, Pr, Nd, Sm, Eu) were synthesized by the direct solid state reaction of Cu2O and Ln2O3, and AgLnO2 (Ln=Tm, Yb, Lu) were obtained by the cation-exchange reaction of NaLnO2 and AgNO3 in a KNO3 flux. These compounds crystallized in the delafossite-type structure with the rhombohedral 3R type (space group: R-3m). Magnetic susceptibility measurements showed that these compounds are paramagnetic down to 1.8 K. Specific heat measurements down to 0.4 K indicated that CuNdO2 ordered antiferromagnetically at 0.8 K.  相似文献   
4.
5.
Reversible mechanochromic luminescence of [(C6F5Au)2(mu-1,4-diisocyanobenzene)] is reported. Grinding of the complex induced a photoluminescent color change, which was restored by exposure to a solvent. This cycle was repeated 20 times with no color degradation in the emissions. Their optical properties, X-ray crystallographic analysis, IR, and XRD measurements strongly suggested that the change in the molecular arrangement is responsible for this mechanochromic property. Intermolecular aurophilic bondings presumably play a key role in the altered emission.  相似文献   
6.
The crystal, electronic, and magnetic structures of the cobalt oxyselenide La(2)Co(2)O(3)Se(2) were investigated through powder neutron diffraction measurements and band structure calculations. This oxyselenide crystallizes in a tetragonal layered structure with space group I4/mmm. The Co ion is sixfold-coordinated by two oxide ions and four selenide ions, and the face-sharing CoO(2)Se(4) octahedra form Co(2)OSe(2) layers. The band structure calculations revealed that the Co ion is in the divalent high-spin state. Rietveld analysis of the neutron diffraction profiles below 200 K demonstrated that the Co moments have a noncollinear antiferromagnetic structure with the propagation vector k = (?, ?, 0). The ordered magnetic moment was determined to be 3.5 μ(B) at 10 K, and the directions of the nearest-neighbor Co moments are orthogonal each other in the c plane.  相似文献   
7.
A series of rare-earth iron borates having general formula LnFe3(BO3)4 (Ln=Y, La-Nd, Sm-Ho) were prepared and their magnetic properties have been investigated by the magnetic susceptibility, specific heat, and 57Fe Mössbauer spectrum measurements. These borates show antiferromagnetic transitions at low temperatures and their magnetic transition temperatures increase with decreasing Ln3+ ionic radius from 22 K for LaFe3(BO3)4 to 40 K for TbFe3(BO3)4. In addition, X-ray diffraction, specific heat, and differential thermal analysis (DTA) measurements indicate that the phase transition occurs for the LnFe3(BO3)4 compounds with Ln=Eu-Ho, Y, and its transition temperature increases remarkably with decreasing Ln3+ ionic radius from 88 K for Ln=Eu to 445 K for Ln=Y.  相似文献   
8.
9.
The crystal structures and magnetic properties of melilite-type oxides Sr(2)MGe(2)O(7) (M = Mn, Co) were investigated. These compounds crystallize in the melilite structure with space group P ?42(1)m, in which the M and Ge ions occupy two kinds of tetrahedral sites in an ordered manner. The magnetic M ions form a square-planar lattice in the ab plane. Both compounds do not show the structural phase transition down to 2.5 K. The temperature dependence of magnetic susceptibility for Sr(2)MnGe(2)O(7) shows a broad peak at ~6.0 K because of a two-dimensional magnetic interaction between Mn ions in the ab plane. At 4.4 K, an antiferromagnetic transition was observed. The magnetic structure was determined by the neutron powder diffraction measurements at 2.5 K. It can be represented by the propagation vector k = (0, 0, 1/2), and the magnetic moments of Mn(2+) (3.99 μ(B)) ions order antiferromagnetically in a collinear manner along the c axis. On the other hand, Sr(2)CoGe(2)O(7) shows an antiferromagnetic transition at 6.5 K with divergence between zero-field-cooled and field-cooled susceptibilities. Its magnetic structure determined at 2.5 K has a magnetic propagation vector k = (0, 0, 0), and the ordered magnetic moment of Co(2+) (2.81 μ(B)) adopts a collinear arrangement lying on the ab plane.  相似文献   
10.
Magnetic properties of double perovskite compounds Ba2HoRuO6 and Ba2HoIrO6 have been reported. Powder X-ray and neutron diffraction measurements show that these compounds have a cubic perovskite-type structure with the space group and the 1:1 ordered arrangement of Ho3+ and Ru5+ (or Ir5+) over the 6-coordinate B sites. Results of the magnetic susceptibility and specific heat measurements show that Ba2HoRuO6 exhibits two magnetic anomalies at 22 and 50 K. Analysis of the temperature dependence of magnetic specific heat indicates that the anomaly at 50 K is due to the antiferromagnetic ordering of Ru5+ ions and that the anomaly at 22 K is ascribable to the magnetic interaction between Ho3+ ions. Neutron diffraction data collected at 10 and 35 K show that the Ba2HoRuO6 has a long range antiferromagnetic ordering involving both Ho3+ and Ru5+ ions. Each of their magnetic moments orders in a Type I arrangement and these magnetic moments are anti-parallel in the ab-plane with each other. The magnetic moments are aligned along the c-direction. On the other hand, Ba2HoIrO6 is paramagnetic down to 1.8 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号