首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   18篇
  国内免费   1篇
化学   210篇
晶体学   1篇
力学   3篇
数学   13篇
物理学   62篇
  2024年   1篇
  2023年   2篇
  2022年   16篇
  2021年   10篇
  2020年   12篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   15篇
  2015年   5篇
  2014年   14篇
  2013年   21篇
  2012年   31篇
  2011年   23篇
  2010年   13篇
  2009年   14篇
  2008年   17篇
  2007年   16篇
  2006年   16篇
  2005年   7篇
  2004年   7篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   3篇
  1997年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1969年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
1.
Helical poly(3-methyl-4-vinylpyridine) (P3M4VP)/amino acid complexes have been prepared via acid-base reaction of the achiral polymer with D and L amino acids: alanine, leucine, valine, serine and phenylalanine. The circular dichroism (CD) spectra of P3M4VP/D- and L-alanine complexes in CH(3)OH/H(2)O show opposing (near mirror image) Cotton effect signals at 278.4, 274.8 and 270.8 nm, indicating the formation of enantiomeric secondary structures. The formation of the enantiomeric structures is supported by observed [alpha](D)(25) values of -3.0 and +3.0 for the P3M4VP/D-alanine and P3M4VP/L-alanine complexes, respectively. The preparation of helical P3M4VP/amino acid complexes has been carried out in CH(3)OH and H(2)O at pH 1.8 and 2.7. The intensities of the Cotton effect signals were good. For example, for the P3M4VP/L-alanine complexes in CH(3)OH/H(2)O and H(2)O (pH 1.8), the second Cotton effect signal around 275-277 nm show [theta;] values of 49 980 and 79 210 deg . cm(2) . dmol(-1), respectively. The formation of the helical secondary structure is rapid. The acid-base reaction between P3M4VP and L-alanine in CH(3)OH/H(2)O, in 10 min, show a CD spectrum with Cotton effect signals at 274 and 272 nm with [theta] values of 27,000 deg . cm(2) . dmol(-1) and -36,000 deg . cm(2) . dmol(-1), respectively. P3M4VP permits ready conformational reorientation on complexation with amino acids, but once the helical P3M4VP/amino acid complexes are formed, it is stable at room temperature. P3M4VP is not compatible with HeLa ovarian cancer cells, but the helical P3M4VP/amino acid complexes are compatible with HeLa cells. The complexes minimally interfere with the adhesion and growth of HeLa cells on complex surfaces. Helical poly(3-methyl-4-vinylpyridine)/D- and L-alanine complexes support the attachment and growth of HeLa cells. The micrographs shows HeLa cells after three days: left panel: on P3M4VP/L-alanine complex; right panel: on P3M4VP/D-alanine complex.  相似文献   
2.
A mild and efficient protocol for the Pictet-Spengler reaction in water using an acid catalyst has been described. The condensation of tryptophan, tryptamine, and Nb-benzyl tryptophan with different aldehydes having both electron-withdrawing and -donating substituents in the presence of a catalytic amount of TFA in water furnished tetrahydro-β-carbolines in good isolated yields. A salient feature of the water mediated Pictet-Spengler reaction was the general trend observed during the condensation of Trp-OMe and aryl/aliphatic aldehydes furnishing diastereomeric mixtures with a preference for the cis-isomer.  相似文献   
3.
Abstract: A simple method for the preparation of various substituted o-hydroxybenzaldehydes is reported.  相似文献   
4.
5.
In recent times, polyaniline (PANI), a conducting polymer, has been studied widely for environmental remediation application due to its controllable electric conductivity with high surface area, which makes it a suitable adsorbent material. But lower mechanical stability of PANI is considered to be a serious drawback for its large-scale industrial application. To improve the mechanical strength of PANI, in this study, hematite nanoparticles were impregnated onto PANI by oxidative polymerization method in order to fabricate a novel organometallic nanocomposite (hematite-PANI-NC). The hematite-PANI-NC was used as adsorbent for removal of methyl orange (MO) and eosin yellow (EY) dye from binary dye matrix under ultrasonic-assisted adsorption. Excellent MO and EY dye removal (more than 98%) was observed from binary matrix at a wide solution pH from 2.0 to 6.0, and under ultrasound wave the adsorption equilibrium was achieved within 15 min only. Both MO and EY dyes adsorption experimental data strictly followed Langmuir isotherm, and maximum monolayer adsorption capacity of 126.58 mg/g and 112.36 mg/g was observed for MO and EY dye, respectively. The uptake mechanism of MO and EY dyes onto hematite-PANI-NC is governed by electrostatic interaction, π-π bonding and hydrogen bonding between dye molecules and nanocomposite. Response surface methodology analysis reveals maximum MO and EY removal of 98.43% and 99.35% at optimum experimental conditions. This study implies that the hybrid organometallic material hematite-PANI-NC has high potential for quick and enhanced sono-assisted uptake of anionic dyes from water near neutral solution pH.  相似文献   
6.
7.
8.
Colloidal stabilization of nanoparticle dispersions is central to applications including coatings, mineral extraction, and dispersion of oil spills in oceanic environments, which often involves oil-mineral-aggregates (OMAs). We have an ongoing interest in the modulation of amphiphile micellization and adsorption behavior in aqueous colloidal dispersions in the presence of various additives. Here we evaluate the effect of added salts CaCl2, MgCl2, and NaCl on the micellization and adsorption behavior of the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer Pluronic P105 (EO37PO56EO37). In 0.10 wt% silica nanoparticle (10.6 nm average diameter) dispersion, adsorbed block copolymer layer formation begins at a critical surface micelle concentration (csmc) of 0.02 wt%, well below the critical micellization concentration of Pluronic P105 in water. Dye solubilization experiments demonstrate an increase in the csmc upon addition of each salt. Each added salt reaches a level of maximum effectiveness in its ability to disfavor Pluronic P105 adsorption at the silica surface. These peak levels occur at concentrations of 0.005, 0.03, and 0.05 M for CaCl2, MgCl2, and NaCl, respectively, in the presence of 0.10 wt% silica nanoparticles. We explain these results in the context of an electrostatic displacer mechanism and discuss possible connections to OMA-dispersant formation.  相似文献   
9.
An expeditious cascade protocol for the synthesis of functionalized imidazo[1,2-a]pyridin-3-ols was developed based on the Petasis reaction. With the availability of commercial reagents and high efficiency in expanding molecule diversity, this methodology is superior to the existing procedures for the synthesis of imidazo-pyridin-3-ol analogues.  相似文献   
10.
Tween-80–n–butanol–diesel–water microemulsion systems with various surfactant:cosurfactant (S:C) ratio have been reported as a class of alternative diesel fuel from their phase behavior, clouding phenomena, conductivity, turbidity, and inflammation studies. Temperature induced clouding of microemulsion containing 2% brine at an S:C ratio of 1:1 from a suitable turbid zone has been examined to see the stability of the diesel–water microemulsion systems. Regression models have been proposed to understand the impact of various components of the microemulsion on their cloud point (CP) values. Conductivity of the microemulsions at various S:C ratio increases with the volume of brine having two cut points depicting the presence of three microheterogenous phases within the system, whereas turbidity shows a linear increase. Dye-probed investigation of water-rich and oil-rich zones of the microemulsions indicates the involvement of a dynamic mass transfer process within the various zones. The intensities of flames produced during burning of the microemulsions with various O:E:W weight percentages selected from the isotropic regions of the phase diagrams have been estimated using MATLAB image processing method and the impacts of various components on the fuel use of the microemulsions have been analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号