首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   1篇
物理学   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
排序方式: 共有3条查询结果,搜索用时 6 毫秒
1
1.
In this paper, we rigorously prove that unpredictable oscillations take place in the dynamics of Hopfield-type neural networks (HNNs) when synaptic connections, rates and external inputs are modulo periodic unpredictable. The synaptic connections, rates and inputs are synchronized to obtain the convergence of outputs on the compact subsets of the real axis. The existence, uniqueness, and exponential stability of such motions are discussed. The method of included intervals and the contraction mapping principle are applied to attain the theoretical results. In addition to the analysis, we have provided strong simulation arguments, considering that all the assumed conditions are satisfied. It is shown how a new parameter, degree of periodicity, affects the dynamics of the neural network.  相似文献   
2.
In this paper, modulo periodic Poisson stable functions have been newly introduced. Quasilinear differential equations with modulo periodic Poisson stable coefficients are under investigation. The existence and uniqueness of asymptotically stable modulo periodic Poisson stable solutions have been proved. Numerical simulations, which illustrate the theoretical results are provided.  相似文献   
3.

In this work, we successfully synthesized porous C/Fe3O4 microspheres by spray pyrolysis at 700ºC with a sodium nitrate (NaNO3) additive in the precursor solution. Furthermore, we studied their electrochemical properties as anode material for Li-ion batteries. The systematic studies by various characterization techniques show that NaNO3 catalyzes the carbonization of sucrose and enhances the crystallization of Fe3O4. Moreover, an aqueous etching can easily remove sodium compounds to produce porous C/Fe3O4 microspheres with large surface areas and pore volumes. The porous C/Fe3O4 microspheres exhibit a reversible capacity of ~780 mAh g–1 in the initial cycles and ~520 mAh g–1 after 30 cycles at a current density of 50 mA g–1. Moreover, a reversible capacity of ~400 mAh g–1 is attainable after 200 cycles, even at a high current density of 500 mA g–1. The wide range of pores produced from the removal of sodium compounds might enable easy electrolyte penetration and facilitate fast Li-ion diffusion, while the N-doping can promote the electronic conductivity of the carbon. These features of porous C/Fe3O4 microspheres led to the improved electrochemical properties of this sample.

Graphical Abstract
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号