首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
旅游文本大数据以其方便、快捷和低门槛的特点为游客情感计算提供了极大便利,已经成为旅游大数据的主要来源之一。基于大数据理论和情感理论,以文本大数据为数据源,在全面梳理国内外情感计算相关成果的基础上,利用人工智能中的逻辑/算法编程方法、机器学习方法、深度学习方法对旅游文本大数据进行挖掘,探索最佳的基于文本大数据的游客情感计算方法。研究发现:(1)基于情感词典的游客情感计算模型,其核心是构建情感词典和设计情感计算规则,方法简单,容易实现,适用语料范围广。(2)机器学习,用统计学方法抽取文本中的特征项,具有非线性特征,可靠性较线性特征的情感词典方法高。(3)基于深度学习技术的游客情感计算,效果良好,准确率在85%以上。训练多领域的文本语料易于移植,实用性强,且泛化能力好,较适合大数据时代游客情感计算研究。  相似文献   

2.
英汉双语文本中的情绪可以通过英语和汉语的单语或者双语形式来表达。然而,以往的研究主要集中在单语文本的情绪分析,只有少数研究侧重于英汉双语文本。为提高英汉双语文本情绪预测效果,本文结合情绪词典方法与深度学习方法,使用联合特征与Bi-LSTM模型来对英汉双语文本进行情绪预测。首先基于情绪词典抽取出双语文本中包含的情绪词特征,然后联合情绪词特征与双语文本特征输入至Bi-LSTM模型进行特征学习,最后将学习到的深度语义特征输入到分类器中进行情绪预测。实验结果表明,该方法对英汉双语文本的情绪预测有良好的效果。  相似文献   

3.
根据新浪财经股票博客的特点,使用点互信息(PMI)方法构建了股票情感词典,在所构建的股票情感词典和现有的台湾大学情感词典基础上,结合经典贝叶斯方法对新浪财经博客的情感分析进行研究,并且在中文分词、自然语言处理(NLP)技术的基础上研究文本句法结构对股票博客文本情感分类结果的影响.实验结果表明:考虑文本中的句法细节以后,如词语搭配、否定词和连词等,使用PMI股票情感词典+贝叶斯方法,宏平均准确率从60.19%提高到80.50%,宏平均召回率从原来的59.35%提高到78.70%,宏平均F1值也由59.77%达到了79.60%.  相似文献   

4.
通过对商品评论的挖掘,商家可以更好地了解消费者的需求从而及时改善产品的设计。目前,针对商品评论的挖掘大多数采用的方法是提取有效的情感特征并利用分类器进行分类。然而由于电商评论文本表述方式多样、行文不规范,口语化等特点,数据稀疏,文档特征维度过高,样本不均衡以及情感词典领域依赖性等问题都导致情感特征的提取过程愈发困难。为了解决这些问题,论文提出一整套针对电商评论挖掘方法,其融合多种策略构建电商领域情感词典;将文本长度作为特征;结合语料库对停用词表进行优化;将文档频率和TF-IDF算法结合进行特征选择和特征加权。论文以热水器评论作为语料库,以支持向量机为核心对所提出方法进行验证,实验结果证明所提出的方法能在降低文本维度的同时可大幅度提高情感分类的准确度。  相似文献   

5.
为提高文本匹配过程中对实体上下文和语义关联信息的学习能力,提出一种融合实体上下文特征的深度文本语义匹配模型。该模型通过学习深度多视图语义交互信息和实体上下文特征匹配矩阵来计算文本的综合匹配得分,采用双向长短时记忆网络和共注意力机制获取文本的局部语义特征并进行多视图向量交互匹配,同时,针对文本中提取到的实体计算上下文特征,通过实体匹配矩阵和卷积神经网络进行实体上下文语义匹配。在SNLI、MultiNLI和Quora Question Pairs数据集上分别与已有基准模型对比,实验结果表明,相比经典深度文本匹配模型,本文提出的融合实体上下文特征的文本匹配模型可以有效提升文本匹配的准确度。  相似文献   

6.
本文研讨缺乏语言资源的民族语言(如维吾尔语)中如何引用语音技术、开发应用系统问题.提出基于GMM-UBM混合SVM技术方法实现实用性说话人识别系统,通过小语料人工标注语音语料预选高精度声学根(seed)模型、再引导大语料训练生成鲁棒性声模提高连续语音识别精度实现汉民会话语音翻译系统.对维吾尔语70人发话电话语音识别实验结果显示,基于GMM-UBM -SVM方法的不特定说话人识别实验其正确识别率为94.3%,比先行GMM-UBM方法精度提升3%;基于seed声模HTK-Julius技术的维吾尔语连续语音识别实验,其识别率为72.5%,比直接使用语音文本对齐语料单靠HTK实现识别方法(63.2%)精度提高9.3%;同时本研究讨论基于Moses技术的汉维医院门诊会话语音翻译系统预测Blue值达到了57.7%.  相似文献   

7.
基于情感文本分析技术对股票研究报告中的投资建议进行分类.提取股票研究报告中的"组合特征";采用改进的卡方统计方法进行特征提取,并通过支持向量机(SVM)和朴素贝叶斯算法进行分类,验证分类效果;探讨了权重计算、特征维度和样本数量对分类效果的影响.基于东方财富网上采集的14 000篇股票研究报告的实验表明,通过提取"组合特征"、部分特征维度以及对训练样本重采样,可以取得较好的分类效果.  相似文献   

8.
软件缺陷的高效自动分派是保障开源软件质量的重要手段。已有研究多基于机器学习技术,从缺陷报告的文本内容和开发者之间的关系入手,研究软件缺陷的自动分派,而对缺陷报告之间的相关关系和基于深度学习技术的缺陷自动分派关注甚少。针对此问题,本文提出了一种基于图卷积神经网络的开发者推荐方法。该方法利用带权重的余弦相似度构建缺陷报告网络,再在增量学习方法下训练图卷积神经网络模型用于开发者推荐。将近年提出的3种方法设置为实验对照组,在大型开源软件项目Eclipse和Mozilla数据集平台上分别进行实验,结果表明本文提出的方法平均推荐准确率比其他3种方法最高提升了60%和70%左右。  相似文献   

9.
旅游生态足迹是生态经济学测度旅游活动对生态环境影响和旅游业可持续发展程度的新方法. 基于生态足迹的理论和方法, 从旅游者消费结构特征出发, 将城市旅游生态足迹构建为6个活动组别计算模型, 运用模型对宁波市旅游业生态足迹进行测评, 结果表明: (1)2007、2010和2013年宁波市人均均衡旅游生态足迹分别为209.02、273.81和312.64m2; (2)宁波市旅游生态足迹的变化主要与游客的数量、消费结构以及游客旅游时所选择的旅游方式有关; (3)旅游交通生态足迹在这三年中的生态占用比重最大, 其次是餐饮生态足迹; (4)宁波市的区内旅游生态足迹空间分割率为74%, 区际和全球的分别为24%和2%. 交通工具的合理选择与安排, 以及加强区际间的联系, 是实现宁波市旅游可持续发展的有效途径.  相似文献   

10.
将网络文本应用于旅游体验要素结构特征分析的研究还较少.以西溪国家湿地公园为例,携程网的游客点评为文本资料来源,利用内容分析法对点评文本进行旅游体验要素编码及要素评价等级评定,整理出西溪湿地公园的旅游体验要素结构和旅游体验质量评价数据集.在此基础上,运用SNA、IPA等手段深入分析了其结构特征.SNA分析结果显示:该旅游体验结构的整体协调性程度较高;湿地自然景观风貌是结构中最核心的要素;整体结构分化为2个有统计学意义和2个无统计学意义的子群结构等.IPA分析结果显示,各旅游体验要素的表现性得分普遍较高,体现游客的旅游体验评价较高.重要性得分差异较大,表明游客对于旅游体验各要素的感知重要程度存在差异.据此,对西溪国家湿地公园的可持续发展提出了相关建议.  相似文献   

11.
随着电力计量业务的不断扩展,迫切需要由业务信息、技术知识、行业标准及其内在联系所组成的电力计量知识图谱,为电网的决策和发展提供更为全面有效的支持。命名实体识别是构建知识图谱的基础。针对电力计量领域需要,结合中文分词技术特点,基于联合学习思想,提出了一种基于联合学习的中文电力计量命名实体识别技术。该技术联合CNN-BLSTM-CRF模型与整合词典知识的分词模型,使其共享实体类别和置信度;同时将2个模型的先后计算顺序改为并行计算,减少了识别误差累积。结果表明,在不需要人工构建特征的情况下,方法的正确率、召回率、F值等均显著优于以往方法。  相似文献   

12.
固定邻域回归(ANR)算法采用K层奇异值分解(K-SVD)算法进行字典训练, 在字典学习过程中存在稀疏表示系数不准确的问题, 导致重建的结果不理想. 因此, 引入一种改进的K-SVD算法对字典进行训练, 该算法对字典训练改变了传统K-SVD算法更新稀疏表示系数的方式, 使得稀疏表示系数更加准确, 而且加快了字典的收敛速度, 使得训练得到的字典具有更好的稀疏表达能力. 同时, 针对ANR算法的不足, 提出一种面向有限带宽信道基于字典学习的图像超分辨率方法, 该方法采用改进的K-SVD算法训练字典对 , 并将其应用到ANR算法中, 实现图像的超分辨率重建. 实验结果表明, 本文提出的方法不仅能够保持ANR算法快速重建的优势, 而且提高了图像的重建质量, 具有更高的峰值信噪比和结构相似度.  相似文献   

13.
土地利用信息是国土资源管理的基础和重要依据,随着高分辨率遥感图像数据的日益增多,迫切需要快速准确的土地利用分类方法。目前应用较广的面向对象的分类方法对空间特征的利用尚不够充分,在特征选择上存在一定的局限性。为此,提出一种基于多尺度学习与深度卷积神经网络(deep convolutional neural network,DCNN)的多尺度神经网络(multi-scale neural network,MSNet)模型,基于残差网络构建了100层编码网络,通过并行输入实现输入图像的多尺度学习,利用膨胀卷积实现特征图像的多尺度学习,设计了一种端到端的分类网络。以浙江省0.5 m分辨率的光学航空遥感图像为数据源进行了实验,总体分类精度达91.97%,并将其与传统全卷积网络(fully convolutional networks,FCN)方法和基于支持向量机(support vector machine,SVM)的面向对象方法进行了对比,结果表明,本文所提方法分类精度更高,分类结果整体性更强。  相似文献   

14.
土地利用信息是国土资源管理的基础和重要依据,随着高分辨率遥感图像数据的日益增多,迫切需要快速准确的土地利用分类方法。目前应用较广的面向对象的分类方法对空间特征的利用尚不够充分,在特征选择上存在一定的局限性。为此,提出一种基于多尺度学习与深度卷积神经网络(deep convolutional neural network,DCNN)的多尺度神经网络(multi-scale neural network,MSNet)模型,基于残差网络构建了100层编码网络,通过并行输入实现输入图像的多尺度学习,利用膨胀卷积实现特征图像的多尺度学习,设计了一种端到端的分类网络。以浙江省0.5 m分辨率的光学航空遥感图像为数据源进行了实验,总体分类精度达91.97%,并将其与传统全卷积网络(fully convolutional networks,FCN)方法和基于支持向量机(support vector machine,SVM)的面向对象方法进行了对比,结果表明,本文所提方法分类精度更高,分类结果整体性更强。  相似文献   

15.
提出了一种在私有云计算环境下基于机器学习V-TGRU模型进行资源预测的算法。通过统计历史记录,将其与当前工作负载下不同任务的先验资源使用情况相结合,同时考虑工作负载特性、主机特征和同一资源池中任务之间的亲和性等因素,动态预测多任务的资源占用情况,并根据预测结果和任务运行现状进行多目标任务优化调度。实验证明,此算法能有效完成对资源的预判选择、减少调度次数、节约调度时间、节省云计算资源和带宽,保障应用任务稳定运行。  相似文献   

16.
大数据时代有效预估网络广告点击率,对企业精准营销和提高投资回报率具有至关重要的作用。对网络广告点击率预估的特征学习及技术研究进行了综述,从原始数据特点及解决方法、点击率预估的特征学习、点击率预估模型构建、评价指标选取等方面,分析了网络广告点击率预估的国内外研究现状。点击率预估可应用于互联网广告投放、推荐系统等多个领域,具有较高的研究价值。  相似文献   

17.
房价预测、共享单车出租数量预测、空气污染情况预测等常涉及矛盾方程组求解,对其数值求解方法研究具有重要的理论意义与应用价值。当矛盾方程组规模过大时,用传统的最小二乘法求解,不仅计算量大,而且由于误差积累使最终结果的准确性不高。鉴于此,采用机器学习中的最小二乘支持向量机(least squares support vector machine,LS-SVM)算法求解大规模矛盾方程组,并分别针对线性、非线性、单变量、多变量矛盾方程组进行了数值求解。数值结果表明,数据类型和数据量的变化对结果的影响不大,因此只要选取适当的参数就可建立合适的模型,得到高精度的预测结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号