首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
光热协同催化去除挥发性有机化合物和CO的研究进展   总被引:2,自引:0,他引:2  
随着社会和经济的快速发展,环境污染和能源短缺等问题,尤其是空气污染,已经影响了人类的可持续发展.挥发性有机化合物(VOCs),如苯、甲苯、甲醛和丙酮是主要的空气污染物,它们主要来源于油漆、有机化学品、石油化工产品、药物和工业生产过程.大多VOCs具有特殊的气味,而且具有一定的毒性、致畸性和致癌作用,尤其是苯、甲苯和甲醛等,会对人类的身体健康产生巨大的负面作用.因此,研发新型高效VOCs处理技术迫在眉睫.除VOCs外,CO也是非常常见的空气污染物,在室温条件下,它无色无味,没有刺激性且易燃易爆.CO主要来源于煤和石油等含碳材料的不完全燃烧.在日常生活中很容易被排放到大气中.在室温下,CO分子是非常稳定的,很难与其它气体分子发生化学反应.因此,CO的活化和转化是一项具有挑战性的工作.催化氧化技术是在催化剂存在的条件下进行的氧化反应,可以将VOCs直接氧化成为无毒无害的CO2和H2O,也可将CO氧化成CO2.光催化技术是一种新型的环境友好型技术,可在常温常压下进行,反应条件温和、能耗小、操作简单,成本低,氧化产物为无毒无害物质,以及不存在二次污染等优点.但光催化反应效率较低,主要通过入射光的能量驱动化学反应.热催化则通过升温的方法来驱动化学反应.目前,热催化剂主要为贵金属型催化剂,其具有催化活性较高,选择性较好且不存在二次污染等优点.但高能耗影响产物的稳定性和选择性,此外,贵金属的使用导致成本增加.光热协同催化可以整合光催化和热催化的优势,并弥补各自的不足,形成一种协同效应,是一种新颖的催化反应.目前,关于光催化或热催化高效去除VOCs和CO的综述较多,但很少有关于光热协同催化高效去除VOCs和CO的综述.本综述重点讨论光热协同催化高效去除VOCs和CO的最新研究进展.首先,介绍了光热协同催化的概况,如设计光热催化材料和催化反应器等.其次,重点介绍苯、甲苯、乙醇、甲醛、乙醛和丙酮等几种典型VOCs的光热协同催化的最新研究进展.再次,总结了光热协同催化CO加氢和氧化的最新研究进展.此外,还探讨了光热协同催化去除VOCs和CO的可能反应机理.最后,对光热协同催化的应用前景进行了展望.  相似文献   

2.
利用太阳能缓解能源危机和解决环境污染,是当前和未来的全球性课题.其中,光催化技术的研究步伐日渐加快.这不仅体现在光催化材料种类的增加,更体现在以光催化为基础的多场协同催化,特别是光热耦合作用成为增强光催化性能的一种高效、可靠的方法.氧空位的引入不仅可以拓宽催化剂对可见光的吸收、抑制载流子的复合、促进反应物的吸附以及降低反应的活化能,而且对于光热协同催化效率的提升有着重要的贡献.然而,目前光热协同催化的表征多局限于常规的光催化手段.开展光热耦合下的测量技术对深刻理解光热催化是十分必要的.本文研究温度、气氛、氧空位浓度对TiO2光电导的影响,构建光电导与光热催化活性之间的关系.我们将商用的ST-01 TiO2制成浆料,利用丝网印刷法将浆料覆盖在刻有沟槽的FTO上,并通过N2/H2混合气不同温度退火,得到不同氧空位含量的TiO2薄膜(Ov-TiO2).采用紫外-可见光谱(UV-Vis),拉曼光谱(Raman),电子顺磁共振(ESR)等手段对样品进行了表征.结果表明,N2/H2退火温度越高,氧空位浓度越高.我们对不同浓度氧空位的样品进行了光催化及光热协同催化CO2还原实验.结果表明,适量氧空位的样品(H2-150)光催化还原CO2性能最差,但光热协同催化还原CO2的性能最佳.我们对其光电导值的衰减情况进行了分析,看到H2-150样品在CO2气氛、光热条件下,电导衰减加快.由于光电导的衰减是由电荷复合和电荷参与的表面反应共同决定的,为确定是哪一因素决定了电导的衰减,我们进一步测试了H2-150样品在N2气氛下的电导衰减情况.结果发现,H2-150样品在N2气氛、光热条件下电导衰减反而变慢.这表明,造成H2-150样品在CO2气氛、光热条件下的电导衰减加快是光热条件下CO2还原速率加快,也验证了H2-150具有较好的光热催化CO2活性.与H2-150样品不同的是,大量氧空位样品(H2-350)在CO2气氛、光热条件下电导衰减反而变慢,我们认为这是由于H2-350存在深能级缺陷,在热的作用下会将捕获的电子释放,因此延缓了光电导的衰减.但由于深能级电子的还原能力较弱,所以H2-350样品的光热CO2还原活性稍逊于H2-150.综上所述,在光热电导与光热催化相关的研究中,我们证实了在Ov-TiO2中被捕获的电子在热激发下可再次向导带弛豫,从而解释了Ov-TiO2优异的光热催化性能.因此,光热电导的研究在理解光热催化方面具有重要的前景.  相似文献   

3.
在传统热催化材料的研究领域中,光照技术已经得到了广泛的应用,从而使传统热催化剂的催化反应活性和选择性得到优化.然而,在光热协同催化反应过程中,光照因素对催化反应过程的影响尚未得到很好地研究和理解.本文通过浸渍法制得Pt/Al2O3催化剂,并应用于光热协同催化CO2加氢反应.结果证明,在光热协同CO2加氢催化反应中, Pt/Al2O3催化剂表现出光热协同效应.本文结合原位漫反射红外光谱(operandoDRIFTS)和密度泛函理论计算(DFT)对光照因素对该催化反应过程的作用机制进行了进一步深入研究.结果表明, CO气体分子从Pt纳米颗粒上的脱附过程为CO2加氢反应的重要步骤;CO气体分子在Pt纳米颗粒上脱附的位置包含台阶位置(Ptstep)和平台位置(Ptterrace).结果表明,反应过程中CO气体分子从Pt表面的脱附有利于催化剂暴露出Pt反应活性位点.值得注意的是,在光热协同催化CO2加氢反应过程中,光照和温度因素对CO气体分子的脱附过程具有不同影响.吸附能的计算结果证明, CO气体分子吸附在Ptstep和Ptterrace上的吸附能分别为-1.24和-1.43eV.由此可见, CO气体分子与Pt纳米颗粒上的Ptstep吸附位点之间相互作用更强.在无光照作用的条件下对催化剂进行加热, CO气体分子更容易从Ptterrace吸附位点发生脱附;但是在对应的温度下加入光照作用后,吸附在Ptstep位点上的CO气体分子会先转移到Ptterrace吸附位点上,随后脱附,从而促进CO2加氢反应的进行.  相似文献   

4.
传统热催化和低温光催化体系在实际应用中都存在技术缺陷.近些年,人们通过将光和热耦合,克服它们各自的局限性,开创了光热协同催化新领域.目前已在CO减排、CO甲烷化和VOCs降解等诸多应用领域得到应用.当然,随着光热催化的发展,研究者也一直在思考光热协同的内在作用机理.目前大多数的机理分析都是从材料本身出发,通过研究表面反应、光吸收或金属与载体之间的电子转移行为来探讨光热协同效应.然而,表面反应只是多相光催化反应的其中一个步骤,此外还包括反应物的扩散和吸附及产物的脱附和扩散,其中反应物的吸附过程因其多变的吸附行为可能在整个反应过程中起着重要的作用.光热协同可能通过作用于气体吸附过程来调节反应的选择性和活性,但到目前为止,两者之间的内在联系尚不清楚.所以,从反应物气体吸附行为(尤其是吸附电子转移行为)的角度深入研究光热协同效应具有重要意义.本文在光催化CO还原和H2氧化体系中引入一定的热条件,希望通过热驱动效应影响H2/CO吸附时的电子转移行为,进而改变反应行为.为简化实验附加条件,选用常见的具有合适带隙宽度以及良好光吸收的ZnO作为研究材料,通过水热法合成了在(100)晶面具有氧空位(VOs)的ZnO样品,引入气敏传感系统检测不同光热条件下的H2/CO气体吸附电子转移行为,并结合多种原位手段从物质结构和气体吸附两个角度出发,分析光热条件下气体吸附行为变化的机理.与我们预测一致,在紫外光照下随着温度的升高,光热协同作用于(002)晶面,原位生长了锌空位(VZns),为H2分子提供吸附位点.H2从Vos位点吸附转移到VZns上,并导致H2(ads)从得电子转变为失电子行为(形成有利于H2氧化的定向吸附),从而发生H2氧化反应.对于同样吸附在高表面能(002)晶面上的CO分子来说,光热协同效应通过抬升材料费米能级来改变其电子转移行为,CO(ads)由失电子转变为得电子行为(形成有利于CO还原的定向吸附),并进一步被失去电子的H2(ads)还原.此外,还发现CO或H2的光催化氧化反应的发生只依赖于CO或H2单分子的定向活化(不考虑O2的吸附和活化),表明其归属于E-R反应过程.而CO的光催化还原反应需要同时满足CO和H2双分子的定向活化,可能归属于L-H反应过程.综上,本文研究结果表明,光热协同内在作用可能是通过改变ZnO材料结构,调节反应物吸附动力学中的电子转移行为,从而引起反应物的定向活化,进而改变反应选择性.  相似文献   

5.
利用太阳能在温和条件下实现CO2还原反应,不仅可以缓解过度消耗化石能源造成的能源危机,还可以改善诸如温室效应和海洋酸化等环境问题.光热协同催化可以有效降低催化反应温度,具有较大的应用前景.本文利用Ru与暴露TiO2{001}晶面的TiO2载体产生的金属-载体相互作用,经过高温氢气煅烧后,获得具有丰富表面氧空位的Ru/TiO2催化剂.活性测试结果表明,具有丰富表面氧空位的Ru/TiO2表现出优异的CO2甲烷化活性,反应过程中甲烷的TOF值在300°C时可以达到22 h-1,但该催化剂却表现出较差的稳定性,在反应10小时后,甲烷的TOF值逐渐降低到19 h-1.将紫外光引入到Ru/TiO2热催化甲烷化体系中,甲烷的TOF值增加到30 h-1,且兼具高稳定性.热催化反应过程中逐渐消失的表面氧空位和部分氧化的Ru是活性降低的主要原因.在光热协同反应中,光生电子的产生稳定了Ru表面的电子密度,同时也再生了催化剂上表面氧空位,这有效地提高了反应的活性和稳定性.程序升温原位红外和X射线光电子能谱实验结果表明,当催化剂表面具有丰富的表面氧空位时,CO2可以有效地在Ru纳米粒子上解离成CO中间体,随后吸附在Ru上的CO中间体解离成表面碳物种,并加氢产生甲烷.在热催化反应过程中,Ru纳米粒子逐渐被氧化成Ru Ox物种,且表面氧空位被CO中间物种覆盖,降低了催化反应的稳定性.当紫外光引入到上述反应中,催化剂的表面氧空位可有效提高光生载流子的分离能力.TiO2载体产生的光电子转移至Ru表面,稳定了金属Ru纳米粒子的价态.另外,载体产生的光生空穴加速了H2质子化,提高了催化剂对氢气的活化迁移能力,促进了CO中间体的加氢甲烷化反应,进而再生表面氧空位.因此在紫外光照下,兼顾提高了热催化CO2甲烷化的活性和稳定性.值得注意的是,当Ru负载于暴露少量TiO2{001}晶面的TiO2载体上时,产生了强金属-载体相互作用并抑制了H2在催化剂上的吸附活化,不利于产生表面氧空位.因此暴露少量TiO2{001}晶面的Ru/TiO2催化剂也不利于光生载流的产生和分离,这导致热催化或光热协同催化反应活性较低.  相似文献   

6.
Gas chambers     
传统热催化和低温光催化体系在实际应用中都存在技术缺陷.近些年,人们通过将光和热耦合,克服它们各自的局限性,开创了光热协同催化新领域.目前已在CO减排、CO甲烷化和VOCs降解等诸多应用领域得到应用.当然,随着光热催化的发展,研究者也一直在思考光热协同的内在作用机理.目前大多数的机理分析都是从材料本身出发,通过研究表面反应、光吸收或金属与载体之间的电子转移行为来探讨光热协同效应.然而,表面反应只是多相光催化反应的其中一个步骤,此外还包括反应物的扩散和吸附及产物的脱附和扩散,其中反应物的吸附过程因其多变的吸附行为可能在整个反应过程中起着重要的作用.光热协同可能通过作用于气体吸附过程来调节反应的选择性和活性,但到目前为止,两者之间的内在联系尚不清楚.所以,从反应物气体吸附行为(尤其是吸附电子转移行为)的角度深入研究光热协同效应具有重要意义.本文在光催化CO还原和H2氧化体系中引入一定的热条件,希望通过热驱动效应影响H2/CO吸附时的电子转移行为,进而改变反应行为.为简化实验附加条件,选用常见的具有合适带隙宽度以及良好光吸收的ZnO作为研究材料,通过水热法合成了在(100)晶面具有氧空位(VOs)的ZnO样品,引入气敏传感系统检测不同光热条件下的H2/CO气体吸附电子转移行为,并结合多种原位手段从物质结构和气体吸附两个角度出发,分析光热条件下气体吸附行为变化的机理.与我们预测一致,在紫外光照下随着温度的升高,光热协同作用于(002)晶面,原位生长了锌空位(VZns),为H2分子提供吸附位点.H2从Vos位点吸附转移到VZns上,并导致H2(ads)从得电子转变为失电子行为(形成有利于H2氧化的定向吸附),从而发生H2氧化反应.对于同样吸附在高表面能(002)晶面上的CO分子来说,光热协同效应通过抬升材料费米能级来改变其电子转移行为,CO(ads)由失电子转变为得电子行为(形成有利于CO还原的定向吸附),并进一步被失去电子的H2(ads)还原.此外,还发现CO或H2的光催化氧化反应的发生只依赖于CO或H2单分子的定向活化(不考虑O2的吸附和活化),表明其归属于E-R反应过程.而CO的光催化还原反应需要同时满足CO和H2双分子的定向活化,可能归属于L-H反应过程.综上,本文研究结果表明,光热协同内在作用可能是通过改变ZnO材料结构,调节反应物吸附动力学中的电子转移行为,从而引起反应物的定向活化,进而改变反应选择性.  相似文献   

7.
近几年,随着催化研究的逐渐深入,将两种或多种手段耦合,能够明显地改善催化性能,其中光热协同催化是当前新型催化技术研究的焦点.我们介绍了光热协同催化在能源合成领域的应用,尤其在光热催化CO_2转化、污染物降解、制氢和费托合成等反应.研究结果表明,两者的有效结合可以超越单独热催化或光催化所能达到的效果,在某些反应中能够明显提高产物的收率,改善目标产物的选择性以及降低反应的温度.最后还展望了光热协同催化发展的前景,以及目前仍然面临反应机理尚不明确和合适催化剂的筛选等问题.  相似文献   

8.
随着工业化的推进,化石能源的消耗产生大量温室气体,其中CH4和CO2占据温室气体排放的98%以上。将CH4和CO2转化为高附加值化学品具有重要的意义,一直受到工业界和学术界广泛关注。传统的热催化甲烷干重整(DRM)可实现将CH4和CO2转化为合成气,但该反应过程受热力学限制,需要很高的能量输入,并且由于反应温度较高,催化剂易发生积碳而失活。绿色环保的光催化技术可以使甲烷干重整反应在温和条件下进行,但是存在太阳光利用率和反应转化率较低等问题。最近光热协同催化受到学术界广泛关注。许多研究结果表明,在相对温和的条件下,光热催化DRM可以获得良好的催化效果,可有效实现太阳能转化为化学能。本文简要介绍近期光热催化甲烷干重整反应的研究进展,总结不同金属催化剂在光热催化甲烷干重整中的应用,同时提出了光热催化甲烷干重整存在的一些挑战及展望。  相似文献   

9.
通过在还原性气氛中煅烧钌基水滑石前驱体,制备了高度分散于金属氧化物纳米片上的钌纳米颗粒(Mg Al Ru-500R).利用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)和紫外-可见-近红外漫反射光谱(UV-Vis-NIR DRS)对Mg Al Ru-500R的晶体结构、形貌、元素组成和光学特性进行分析表征.基于流动相反应体系研究了Mg Al Ru-500R催化剂在常压条件下的光热催化合成氨性能.结果表明,Mg Al Ru-500R可以仅依靠光照升温至300℃以上,并驱动光热催化合成氨反应.在380℃下,Mg Al Ru-500R光热催化合成氨速率高达3.0 mmol·g?1·h?1,显著高于相同温度下的热催化合成氨速率(1.5 mmol·g?1·h?1).动力学分析(包括表观活化能和动力学反应级数的测定)结果表明,优异的光热催化合成氨活性是因为光激发加速了N2解离,进而降低了反应活化能.  相似文献   

10.
本工作为非Ti基光热协同材料研究,使用溶液沉淀法制备了ZnO/Zn2GeO4复合材料(Z/ZGO)应用于光热协同分解CO2.使用透射电子显微镜(TEM)、X射线衍射技术(XRD)、紫外可见漫反射光谱(UV-Vis DRS)、X射线光电子能谱(XPS)等表征手段对材料的形貌、光响应以及氧空位对反应的影响进行研究.锌锗二元氧化物复合材料综合两种半导体的优势,形成异质结,扩展了材料光谱响应范围,提高了材料氧空位形成能力,使得CO产率提高至单纯ZnO样品的5.55倍,并具有较好的循环稳定性.对扩展光热协同催化材料体系,进一步深化光热协同反应机理以及提升反应产率具有一定的前瞻和指导作用.  相似文献   

11.
在以碳中和为目标的全球共识下,太阳能作为一种取之不竭用之不尽的绿色环保能源被认为是替代传统化石燃料最有潜力的方式。在各种太阳能转换技术中,光热催化不仅可以最大化利用太阳能,在光场和热场双重驱动力作用下,还可以显著提升化学反应速率,引起广泛的研究兴趣。以孤立的单个原子均匀分散在载体上形成的单原子催化剂具有100%原子利用率、优异的催化活性、热稳定性等优势。因此,将单原子催化剂应用于光热催化开始受到越来越多的关注。本综述介绍了光催化、热催化和光热催化的基本原理和特征,同时列举一些典型的例子。随后以不同载体作为分类标准,总结了单原子光热催化应用的前沿研究进展。最后,提出了该催化体系所面临的挑战和未来的发展方向。本文旨在全面了解单原子催化剂在太阳能驱动光热催化领域的研究现状并为未来发展提供可行的建议。  相似文献   

12.
Recently, solar-driven synthesis due to its energy-saving and environmentally friendly advantages has attracted more and more attention, whereas the low solar-to-chemical conversion efficiency significantly hindered its development. New effective options that fully utilize full-band sunlight are urgently needed. Novel photothermal catalysis combined with the advantages of photocatalysis and thermalcatalysis can improve the utilization efficiency of solar energy and lower the reaction temperature, thus becoming a promising technology. This review divides photothermal catalysis into photo-assisted thermalcatalysis, thermal-assisted photocatalysis, and photothermal synergistic catalysis. Furthermore, the catalytic mechanical understanding of how photothermal affects the catalytic property of different applications(e.g., water splitting, CO2/N2 reduction, and environmental treatment) was also summed up and discussed in detail. The discussion ends with unsolved challenges in photothermal catalysis, particularly emphasizing the effect of temperature or sunlight on catalytic performance.  相似文献   

13.
TiO2 heterojunction with different TiO2 phases has been widely adopted for enhanced photocatalysis. Therein, a less common anatase/bronze TiO2 heterojunction, also named as anatase/TiO2(B) heterojunction, has recently drawn increasing interest. In this review, the structural advantages of anatase/bronze TiO2 heterojunction for enhanced photocatalysis is highlighted in terms of less lattice mismatch and better charge separation at the interface. Besides photocatalysis, the anatase/bronze TiO2 heterojunction is proven a promising candidate for heat-assisted photocatalysis, named as photothermal catalysis. Further, the anatase/bronze TiO2 heterojunction can serve as a good model to evaluate the strategy for improved photocatalysis and even photothermal catalysis. Herein, the recent attempts on boosting the photocatalytic and photothermal catalytic performance of anatase/bronze TiO2 heterojunction are summarized. It is expected that this review would arouse renewed interest for revisiting TiO2 heterojunction in photocatalysis, photothermal catalysis and other advanced photocatalysis.  相似文献   

14.
光热催化还原技术是二氧化碳资源化的研究热点之一。设计高效的新型催化剂材料,是构建有效的光热催化反应体系的重要内容,而开发与催化材料适配的反应器,则可以最大化地发挥催化剂的性能,是光热催化放大反应的关键。本文综述了光热催化反应器的不同形式,讨论了光热催化关键变量温度、光照、给料类型和运行方式对反应器设计的影响。总结了反应器设计的局限性和挑战性,为光热催化还原二氧化碳的技术发展提出了展望。  相似文献   

15.
Photothermal catalysis is one of the most promising green catalytic technologies, while distinguishing the effects of hot electrons and local heating remains challenging. Herein, we reported that the actual reaction temperature of photothermal ammonia synthesis over carbon-supported Ru catalyst can be measured based on Le Chatelier′s principle, enabling the hot-electron contribution to be quantified. By excluding local heating effects, we established that the activation energy via photothermal catalysis was much lower than that of thermocatalysis (54.9 vs. 126.0 kJ mol−1), stemming from hot-electron injection lowering the energy barriers for both N2 dissociation and intermediates hydrogenation. Furthermore, hot-electron injection acted to suppress carbon support methanation, giving the catalyst outstanding operational stability over 1000 h. This work provides new insights into the hot-electron effects in ammonia synthesis, guiding the design of high-performance photothermal catalysts.  相似文献   

16.
《中国化学快报》2023,34(2):107420
The conversion of carbon dioxide into useful fuels or chemical feedstocks is of great importance for achieving carbon emission peak and carbon neutrality. The harvesting and conversion of solar energy will provide a sustainable and environmentally friendly energy source for human production and living. Very recently, photothermal catalysis has been proved to exhibit great advantages in reducing the reaction temperature, promoting the catalytic activity, and manipulating the reaction pathway in comparison with traditional thermal catalysis. In this review, we firstly introduced the fundamental mechanisms and categories of photothermal catalysis to understand the synergy or the difference between photochemical and thermochemical reaction pathways. Subsequently, the criteria and strategies for photothermal catalyst design are discussed in order to inspire the development of high-efficiency photothermal catalytic route by achieving intense absorption of broadband solar energy spectrum and high conversion capability of solar-to-heat. Recent progress in CO2 reduction achieved by photothermal catalysis was summarized in terms of production types. In the end, the future challenges and perspectives of photothermal catalytic CO2 reduction are presented. We hope that this review will not only deepen the understanding of photothermal catalysis, but also inspire the design, preparation and application of high-performance photothermal catalysts, aiming at alleviating non-renewable fossil energy consumption and carbon emissions for early carbon emission peak and carbon neutrality.  相似文献   

17.
离子液体为构建绿色催化反应过程提供了新途径.本文简要评述了离子液体在几个代表性催化反应中的研究进展,如CO2羰基化、烷基化、酯交换、氧化、CO2加氢、共聚以及PET降解等;分析讨论了离子液体的特点和优势,如提高反应活性、降低废物排放以及简化分离等,并对离子液体催化反应的未来发展方向进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号