首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The exchange processes of D + H(2)O and D + HOD reactions are studied using initial state-selected time-dependent wave packet approach in full dimension. The total reaction probabilities for different partial waves, together with the integral cross sections, are obtained both by the centrifugal sudden (CS) approximation and exact coupled-channel (CC) calculations, for the H(2)O(HOD) reactant initially in the ground rovibrational state. In the CC calculations, small resonance peaks in the reaction probabilities and quick diminishing of the resonance peaks with the increase of total angular momenta J do not lead to clear step-like features just above the threshold in the cross sections for the title reactions, which are different in other isotopically substituted reactions where the hydrogen atom was included as the reactant instead of the deuterium atom [B. Fu, Y. Zhou, and D. H. Zhang, Chem. Sci. 3, 270 (2012); B. Fu and D. H. Zhang, J. Phys. Chem. A 116, 820 (2012)]. It is interesting that the shape resonance-induced features resulting from the reaction tunneling are significantly diminished accordingly in the reactions of the deuterium atom and H(2)O or HOD, owing to the weaker tunneling capability of the reagent deuterium atom in the title reactions than the reagent hydrogen atom in other reactions. In the CS calculations, the resonance peaks persist in many partial waves but cannot survive the partial-wave summations. The cross sections for the D(') + H(2)O → D(')OH + H and D(') + HOD → D(')OD + H reactions are substantially larger than those for the D(') + HOD → HOD(') + D reaction, indicating that the D(')/H exchange reactions are much more favored than the D(')/D exchange.  相似文献   

2.
The initial state-selected time-dependent wave packet approach is employed to study the H' + H(2)O → H'OH + H and H' + HOD → H'OD + H, HOH' + D exchange reactions with both OH bonds in the H(2)O reactant and OH(D) bond in the HOD reactant treated as reactive bonds. The total reaction probabilities for different partial waves, as well as the integral cross sections, which are the exact CC (coupled-channel) results, are first obtained in this study for the H(2)O(HOD) reactant initially in the ground rovibrational state. Because of the shallow C(3v) minimum along the reaction path, the reaction probabilities for the three reactions present several resonance peaks, with one dominant resonance peak just above the threshold. The cross sections for the H' + HOD → HOH' + D reaction are substantially smaller than those for the H' + H(2)O → H'OH + H and H' + HOD → H'OD + H reactions, indicating that the H'/H exchange reactions are much more favored. In the CC calculations, the resonance peaks in the reaction probabilities diminish quickly with the increase in total angular momenta J, resulting in the existence of a clear step-like feature just above the threshold in the cross sections for the title reactions, which manifests the signature of shape resonances in these reactions. In the CS calculations, the resonance peaks on reaction probabilities persist in many partial waves, and thus the resonance structures can no longer survive the partial-wave summation and are washed out completely in the CS cross sections for the title reactions.  相似文献   

3.
A combined electronic structure/molecular dynamics approach was used to calculate infrared and isotropic Raman spectra for the OH or OD stretches of dilute HOD in D2O or H2O, respectively. The quantities needed to compute the infrared and Raman spectra were obtained from density functional theory calculations performed on clusters, generated from liquid-state configurations, containing an HOD molecule along with 4-9 solvent water molecules. The frequency, transition dipole, and isotropic transition polarizability were each empirically related to the electric field due to the solvent along the OH (or OD) bond, calculated on the H (or D) atom of interest. The frequency and transition dipole moment of the OH (or OD) stretch of the HOD molecule were found to be very sensitive to its instantaneous solvent environment, as opposed to the isotropic transition polarizability, which was found to be relatively insensitive to environment. Infrared and isotropic Raman spectra were computed within a molecular dynamics simulation by using the empirical relationships and semiclassical expressions for the line shapes. The line shapes agree well with experiment over a temperature range from 10 to 90 degrees C.  相似文献   

4.
The gas phase H/D exchange reactions of bradykinin (M + 3H)3+ ions with D2O and DI were monitored in a quadrupole ion trap mass spectrometer. The H/D exchange kinetics of both chemical probes (D2O and DI) indicate the presence of two noninterconverting reactive gas phase ion populations of bradykinin (M + 3H)3+ at room temperature. The H/D exchange involving DI, however, generally proceeds faster than that involving D2O. The rate observations described here can be rationalized on the basis of the "relay mechanism" (see Campbell et al. J. Am. Chem. Soc. 1995, 117, 12840-12854) recently proposed to account for H/D exchange between D2O and gaseous protonated polypeptides. The higher exchange rate with DI is believed to arise primarily as a result of its lower gas-phase acidity relative to that of D2O and, secondarily, as a result of the longer bond length of DI relative to that of OD in D2O.  相似文献   

5.
We present a new approach that combines electronic structure methods and molecular dynamics simulations to investigate the infrared spectroscopy of condensed phase systems. This approach is applied to the OH stretch band of dilute HOD in liquid D2O and the OD stretch band of dilute HOD in liquid H2O for two commonly employed models of water, TIP4P and SPC/E. Ab initio OH and OD anharmonic transition frequencies are calculated for 100 HOD x (D2O)n and HOD x(H2O)n (n = 4-9) clusters randomly selected from liquid water simulations. A linear empirical relationship between the ab initio frequencies and the component of the electric field from the solvent along the bond of interest is developed. This relationship is used in a molecular dynamics simulation to compute frequency fluctuation time-correlation functions and infrared absorption line shapes. The normalized frequency fluctuation time-correlation functions are in good agreement with the results of previous theoretical approaches. Their long-time decay times are 0.5 ps for the TIP4P model and 0.9 ps for the SPC/E model, both of which appear to be somewhat too fast compared to recent experiments. The calculated line shapes are in good agreement with experiment, and improve upon the results of previous theoretical approaches. The methods presented are simple, and transferable to more complicated systems.  相似文献   

6.
The room temperature absorption spectra of water and its isotopomers D2O and HOD have been determined in absolute cross section units in the 125 to 145 nm wavelength region using synchrotron radiation. The experimental results for these B band spectra are compared with results from quantum mechanical calculations using accurate diabatic ab initio potentials. A Monte Carlo sampling over the initial rotational states of the molecules is applied in order to calculate the cross sections at a temperature of 300 K. The overall rotation of the water molecule is treated exactly. Both for the experimental and for the theoretical spectrum an analysis is made in terms of a component attributed to rapid direct dissociation processes and a component attributed to longer-lived resonances. The agreement between the results from experiment and theory is excellent for H2O and D2O. In the case of HOD in the results of theory two more resonances are found at low energy. It is demonstrated that the width of the resonances of 0.04 eV is the result of overlapping and somewhat narrower resonances in the spectra of molecules differing in rotational ground state.  相似文献   

7.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

8.
By means of continuous wave electron spin resonance (cw ESR) in the X and L bands, the spin exchange of series of different concentrations of the spin probes 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), and 4-(trimethylamino)-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (CAT-1) in H(2)O and D(2)O have been examined. The rate constants k(e) of the spin exchange have been determined by complete spectra simulations, as well as directly from hyperfine line broadenings and concentration depending line shifts. The obtained results showed a good agreement. Their respective differences {k(e)(H(2)O) - k(e)(D(2)O)} could be determined for the first time. They reflect the different influence of the solvents on the spin dynamics but confirm the decrease of the reaction rate in D(2)O, caused by the higher degree of order in this liquid. The spectroscopic and kinetic results presented in this paper establish a further kind of isotopic effect.  相似文献   

9.
Detection of HOD simultaneously in the presence of a mixture of H2O and D2O is still an experimental challenge. Till date, there is no literature report of simultaneous detection of H2O, D2O and HOD based on vibrational spectra. Herein we report simultaneous quantitative detection of H2O, D2O and HOD in the same reaction mixture with the help of bridged polynuclear peroxo complex in absence and presence of Au nanoparticles on the basis of a peroxide vibrational mode in resonance Raman and surface enhanced resonance Raman spectrum. We synthesize bridged polynuclear peroxo complex in different solvent mixture of H2O and D2O. Due to the formation of different nature of hydrogen bonding between peroxide and solvent molecules (H2O, D2O and HOD), vibrational frequency of peroxo bond is significantly affected. Mixtures of different H2O and D2O concentrations produce different HOD concentrations and that lead to different intensities of peaks positioned at 897, 823 and 867 cm−1 indicating H2O, D2O and HOD, respectively. The lowest detection limits (LODs) were 0.028 mole fraction of D2O in H2O and 0.046 mole faction of H2O in D2O. In addition, for the first time the results revealed that the cis-peroxide forms two hydrogen bonds with solvent molecules.  相似文献   

10.
Reactions of protonated water clusters, H(H(2)O)(n) (+) (n=1-4) with D(2)O and their "mirror" reactions, D(D(2)O)(n) (+) (n=1-4) with H(2)O, are studied using guided-ion beam mass spectrometry. Absolute reaction cross sections are determined as a function of collision energy from thermal energy to over 10 eV. At low collision energies, we observe reactions in which H(2)O and D(2)O molecules are interchanged and reactions where H-D exchange has occurred. As the collision energy is increased, the H-D exchange products decrease and the water exchange products become dominant. At high collision energies, processes in which one or more water molecules are lost from the reactant ions become important, with simple collision-induced dissociation processes, i.e., those without H-D exchange, being dominant. Threshold energies of endothermic channels are measured and used to determine binding energies of the proton bound complexes, which are consistent with those determined by thermal equilibrium measurements and previous collision-induced dissociation studies. A kinetic scheme that relies only on the ratio of isomerization and dissociation rate constants successfully accounts for the kinetic energy dependence observed in the branching ratios for H-D and water exchange products in all systems. Rice-Ramsperger-Kassel-Marcus theory and ab initio calculations confirm the feasibility and establish the details of this kinetic model.  相似文献   

11.
Hydrogen/deuterium exchange in reactions of H3O(+)(H2O)n and NH4(+)(H2O)n (1 < or = n < or = 30) with D2O has been studied experimentally at center-of-mass collisions energies of < or = 0.2 eV. For a given cluster size, the cross-sections for H3O(+)(H2O)n and NH4(+)(H2O)n are similar, indicating a structural resemblance and energetics of binding. For protonated pure water clusters, H3O(+)(H2O)n, reacting with D2O the main H/D exchange mechanism is found to be proton catalyzed. In addition the H/D scrambling becomes close to statistically randomized for the larger clusters. For NH4(+)(H2O)n clusters reacting with D2O, the main mechanism is a D2O/H2O swap reaction. The lifetimes of H3O(+)(H2O)n clusters have been estimated using RRKM theory and a plateau in lifetime vs. cluster size is found already at n = 10.  相似文献   

12.
As part of a comprehensive investigation on the stereochemistry of base-catalyzed 1,2-elimination and H/D exchange reactions of carbonyl compounds, we have found that the stereoselectivity of H/D exchange of 3-hydroxybutyryl N-acetylcysteamine (3) in D(2)O is strongly influenced by the presence of buffers. This buffer effect is also operative with a simple acyclic ester, ethyl 3-methoxybutanoate (7). Buffers whose general-acid components are cyclic tertiary ammonium ions are particularly effective in changing the stereoselectivity. (2)H NMR analysis showed that without buffer, H/D exchange of 3 produces 81-82% of the 2R*, 3R* diastereomer of 2-deuterio 3 (the anti product). In the presence of 0.33 M 3-quinuclidinone buffer, only 44% of the 2R*, 3R* diastereomer was formed. With ester 7, the stereoselectivity went from 93-94% in DO(-)/D(2)O to 60% in the presence of buffer. Phosphate buffer, as well as others, also showed substantial effects. The results are put into the context of what is known about the mechanism of H/D exchange of esters and thioesters, and the relevance of the buffer effect on the mechanism of the enoyl-CoA hydratase reaction is discussed. It is likely that hydrogen bonding in the enolate-buffer acid encounter complex is an important stereochemical determinant in producing a greater amount of the 2R*, 3S* diastereomer (the syn product). Studies that involve the protonation of enolate anions in D(2)O need to include the buffer general acid in any understanding of the stereoselectivity.  相似文献   

13.
Two major metabolites and one minor metabolite of sulfadiazine were found in pig manure, using a special combination of different MS techniques like parent and product ion scans, H/D exchange, accurate mass measurement, and MS/MS experiments with substructures. N4-acetylsulfadiazine and 4-hydroxysulfadiazine were identified as major metabolites. N4-acetylsulfadiazine could be verified by H/D exchange and comparison with product ion spectra of a synthetic reference compound. In the case of 4-hydroxysulfadiazine, the majority of possible isomers could be discounted after H/D exchange. Substructure-specific MS/MS experiments with fragment ions and comparison with product ion spectra of two references revealed the presence of 4-hydroxysulfadiazine. The minor metabolite was characterized to some degree using H/D exchange and tandem mass spectrometry in combination with a high-resolution time of flight mass spectrometer. The aminopyrimidine moiety contained an additional modification with a likely elemental composition of C2H4O and no further acidic hydrogen.  相似文献   

14.
Gas-phase hydrogen-deuterium (H/D) exchange reactions involving four isomeric cyclopropane derivatives were investigated under chemical ionization (CI) conditions, using D(2)O and CD(3)OD as reagent gases. There are abundant ions at [M + 1](+), [M + 2](+) and [M + 3](+) in the D(2)O and CD(3)OD positive-ion CI mass spectra of the two isomer pairs 1, 2 and 3, 4. Their CI mass spectra are identical with each pair, and so are the collision-induced dissociation (CID) spectra of ions [M + 1](+), [M + 2](+) and [M + 3](+) of each of the two isomer pairs. The CID spectra of [M + 1](+) ions indicate that they have common D/H exchange reactions within each pair, which take place between molecular ions and deuterium-labeling reagents to form the [M - H + D](+) ions. Those of their [M + 2](+) ions show that they have common D/H exchange reactions within each pair, which form the [M(d1) + H](+) ions. Those of their [M + 3](+) ions show that they have common D/H exchange reactions within each pair, which take place between the [M(d1)] and deuterium-labeling reagents to produce [M(d2) + H](+) for the isomer pair 1, 2 and [M(d1) + D](+) for the isomer pair 3, 4. The number and position, and active order of the active hydrogen atoms of the isomer pairs 1, 2 and 3, 4 were determined. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Isotopic H/D exchange between coadsorbed acetone and water on the TiO2(110) surface was examined using temperature programmed desorption (TPD) as a function of coverage and two surface pretreatments (O2 oxidation and mild vacuum reduction). Coadsorbed acetone and water interact repulsively on reduced TiO2(110) on the basis of results from the companion paper to this study, with water exerting a greater influence in destabilizing acetone and acetone having only a nominal influence on water. Despite the repulsive interaction between these coadsorbates, about 0.02 monolayers (ML) of a 1 ML d6-acetone on the reduced surface (vacuum annealed at 850 K to a surface oxygen vacancy population of 7%) exhibits H/D exchange with coadsorbed water, with the exchange occurring exclusively in the high-temperature region of the d6-acetone TPD spectrum at approximately 340 K. The effect was confirmed with combinations of d0-acetone and D2O. The extent of exchange decreased on the reduced surface for water coverages above approximately 0.3 ML due to the ability of water to displace coadsorbed acetone from first layer sites to the multilayer. In contrast, the extent of exchange increased by a factor of 3 when surface oxygen vacancies were pre-oxidized with O2 prior to coadsorption. In this case, there was no evidence for the negative influence of high water coverages on the extent of H/D exchange. Comparison of the TPD spectra from the exchange products (either d1- or d5-acetone depending on the coadsorption pairing) suggests that, in addition to the 340 K exchange process seen on the reduced surface, a second exchange process was observed on the oxidized surface at approximately 390 K. In both cases (oxidized and reduced), desorption of the H/D exchange products appeared to be reaction limited and to involve the influence of OH/OD groups (or water formed during recombinative desorption of OH/OD groups) instead of molecularly adsorbed water. The 340 K exchange process is assigned to reaction at step sites, and the 390 K exchange process is attributed to the influence of oxygen adatoms deposited during surface oxidation. The H/D exchange mechanism likely involves an enolate or propenol surface intermediate formed transiently during the desorption of oxygen-stabilized acetone molecules.  相似文献   

16.
在D2O化学反应气条件下研究了环丙烷衍生物的H/D交换反应特性.发现了三种新的产物离子[M+1]+、[M+2]+和[M+3]+.应用碰撞诱导碎裂(CID)技术研究了这些离子的碎裂反应特性.实验结果表明三种新的产物离子是由反应物与试剂离子之间发生H/D交换反应生成的.并获得了环丙烷衍生物结构中活泼氢位置及其数量的信息.  相似文献   

17.
The structure of monoclinic Se2O5, S. G. P21/c, Z = 4, was solved by direct methods and refined by an anisotropic full matrix least-squares to R = 0.116 for 855 densitometer intensities. The structure consists of zig-zag chaines [? Se(O)? O? Se(O)2? O? ]n with alternating Se(IV) and Se(VI) atoms. Each Se atom is coordinated tetrahedrally, Se(VI) by 4 O atoms, Se(IV) by 3 O atoms and a lone electron pair.  相似文献   

18.
We have investigated the pressure-induced spectral changes and the proton exchange reactions of D(2)-H(2)O mixtures to 64 GPa using micro-Raman spectroscopy. The results show the profound difference in the rotational and vibrational Raman spectra of hydrogen isotopes from those of the pure samples, showing the vibrational modes at higher frequencies and continuing to increase with pressure without apparent turnover. This indicates the repulsive nature of D(2)-H(2)O interaction without hydrogen bonds between the two and, thus, interstitial fillings of D(2) molecules into the bcc-like ice lattice. The spectral analysis using the Morse potential yields a hydrogen bond distance of 0.734 ? at 6 GPa--slightly shorter than that in pure--attributed to the repulsive interaction. The pressure-dependent spectral changes suggest that the proton-ordering transition in the ice lattice occurs over a large pressure range between 28 and 50 GPa, which is substantially lower than that of pure ice (40-80 GPa). This again indicates the presence of high internal pressure arising from the repulsive interaction. The Raman spectra show evidences that the proton exchange occurs in various phases including in solid D(2) and H(2)O mixtures. Based on the time-dependent spectral changes, we obtained the proton exchange rates of k ~ 0.085 h(-1) at 0.2 GPa in fluid D(2) and water mixtures, k ~ 0.03 h(-1) and 0.003 h(-1) at 2 GPa and 4 GPa, respectively, in fluid D(2)-ice mixtures, and k ~ 10(-3) h(-1) at 8 GPa in solid D(2) and ice mixtures.  相似文献   

19.
Electrospray ionization (ESI) and collisionally induced dissociation (CID) mass spectra were obtained for five tetracyclines and the corresponding compounds in which the labile hydrogens were replaced by deuterium by either gas phase or liquid phase exchange. The number of labile hydrogens, x, could easily be determined from a comparison of ESI spectra obtained with N2 and with ND3 as the nebulizer gas. CID mass spectra were obtained for [M + H]+ and [M - H]- ions and the exchanged analogs, [M(Dx) + D]+ and [M(Dx) - D]- , and produced by ESI using a Sciex API-III(plus) and a Finnigan LCQ ion trap mass spectrometer. Compositions of product ions and mechanisms of decomposition were determined by comparison of the MS(N) spectra of the un-deuterated and deuterated species. Protonated tetracyclines dissociate initially by loss of H2O (D2O) and NH3 (ND3) if there is a tertiary OH at C-6. The loss of H2O (D2O) is the lower energy process. Tetracyclines without the tertiary OH at C-6 lose only NH3 (ND3) initially. MSN experiments showed easily understandable losses of HDO, HN(CH3)2, CH3 - N=CH2, and CO from fragment ions. The major fragment ions do not come from cleavage reactions of the species protonated at the most basic site. Deprotonated tetracyclines had similar CID spectra, with less fragmentation than those observed for the protonated tetracyclines. The lowest energy decomposition paths for the deprotonated tetracyclines are the competitive loss of NH3 (ND3) or HNCO (DNCO). Product ions appear to be formed by charge remote decompositions of species de-protonated at the C-10 phenol.  相似文献   

20.
The Raman and infrared spectra of solid K2(12)C2O4 x H2O are reported together with, for the first time, the corresponding Raman and infrared spectra of solid K2(13)C2O4 x H2O. Raman spectra of aqueous solutions of both isotopomers are also reported. In the solid state the oxalate anion is planar with D2h symmetry in this salt, whereas in aqueous solution the Raman spectra of the anion are best interpreted on the basis of D2d symmetry. The Raman spectra of solid (NH4)2(12)C2O4 x H2O and (NH4)2(13)C2O4 x H2O, in which the oxalate anion is twisted from planarity by 28 degrees about the CC bond, have also been recorded. Several reassignments have been made. The harmonic force field for the oxalate anion in the D2h, D2 and D2d geometries has been determined in part, and approximate values of key valence force constants determined. All the observed band wavenumbers and 12C/13C isotopic shifts are well reproduced by the force fields. The potential energy distribution of the totally symmetric normal modes of planar oxalate indicates that each mode consists of extensively mixed symmetry corrdinates and that the labels previously used for the bands seen here at 475 and 879 cm(-1) would better be described as v(CC) and deltaS(CO2), respectively, putting them in the same wavenumber order as v(NN) and deltaS(NO2) for the isoelectronic and isostructural molecule N2O4. The stretching force constants of N2O4 and planar C2O4(2-) are established to be in the order f(NN) < f(CC) and f(NO) > f(CO), consistent with the known relative bond lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号