首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the sensitivity analysis of the macroscopic elasticity tensor to topological microstructural changes of the underlying material. In particular, the microstucture is topologicaly perturbed by the nucleation of a small circular inclusion. The derivation of the proposed sensitivity relies on the concept of topological derivative, applied within a variational multi‐scale constitutive framework where the macroscopic strain and stress at each point of the macroscopic continuum are defined as volume averages of their microscopic counterparts over a representative volume element (RVE) of material associated with that point. We consider that the RVE can contain a number of voids, inclusions and/or cracks. It is assumed that non‐penetration conditions are imposed at the crack faces, which do not allow the opposite crack faces to penetrate each other. The derived sensitivity leads to a symmetric fourth‐order tensor field over the unperturbed RVE domain, which measures how the macroscopic elasticity parameters estimated within the multi‐scale framework changes when a small circular inclusion is introduced at the micro‐scale level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
To determine the mechanical behavior of material involving the martensitic phase transformation (for example, steels like 100Cr6), a representative volume element (RVE) model including phase transformation criterion is desireable at micromechanical approach. A framework combining the Eshelby's inclusion theory as well as continuum mechanics with phase-transformation (PT) critical condition at RVE model is presented briefly. And application of this model to estimate the critical aspect ratio of martensitic plate or lath inside homogeneneous stress field is also included, where the RVE can be under uniaxial tension/compression or pure shear loading case. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Various phenomena occurring on the macrosscale result from physical and mechanical behaviour on the microscale [1]. For the mechanical modeling and simulation of the heterogeneous composition of fiber structured material, in addition to the material properties the contact between the fibers has to be taken into account. The material behaviour is strongly influenced by the material properties of the fiber, but also by the geometrical structure. Periodically arranged fibers like woven, knitted or plaited fabrics and randomly oriented ones like fleece can be distinguished in their arrangement. In consideration of different lengthscales the problem involves, it is necessary to introduce a multiscale approach based on the concept of a representative volume element (RVE). The macro-micro scale transition requires a method to impose the deformation gradient on the RVE by suited boundary conditions. The reversing scale transition, based on the HILL-MANDEL condition, requires the equality of the macroscopic average of the variation of work on the RVE and the local variation of the work on the macroscale [2]. For the micro-macro transition the averaged stresses have to be extracted by a homogenization scheme. From these results an effective material law can be derived. Beside the theoretical aspects, we present the stress-strain relation for RVE-models and different boundary conditions. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Fabric or continuous fiber reinforced rubber components (e.g. tires, air springs, industrial hoses, conveyor belts or membranes) are underlying high deformations in application and show a complex, nonlinear material behavior. A particular challenge depicts the simulation of these composites. In this contribution we show the identification of the stress and strain distributions by using an uncoupled multiscale modeling method, see [1]. Within this method, two representation levels are described: One, the meso level, where all constituents of the composite are shown in a discrete manner by a representative volume element (RVE) and secondly, the macro level, where the structural behavior of the component is defined by a smeared anisotropic hyperelastic constitutive law. Uncoupled means that the RVE does not drive the macroscopic material behavior directly as in a coupled approach, where a RVE boundary value problem has to be solved at every integration point of the macro level. Thus an uncoupled approach leads to a tremendous reduction in numerical effort because the boundary value problem of a RVE just has to be solved at a point of interest, see [1]. However, the uncoupled scale transition has to fulfill the HILL–MANDEL condition of energetic equivalence of both scales. We show the calibration of material parameters for a given constitutive model for fiber reinforced rubber by fitting experimental data on the macro level. Additionally, we demonstrate the determination of effective properties of the yarns. Finally, we compare the energies of both scales in terms of compliance with the HILL–MANDEL condition by using the example of a biaxial loaded sample and discuss the consequences for the mesoscopic level. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The representative volume element (RVE) method is applied to a fiber reinforced polymer material undergoing matrix damage and fiber fracture. Results of RVE computations are compared to uniaxial tensile tests performed with the composite material. It is shown that the macroscopic behavior of the composite material can accurately be predicted by RVE computations. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The proper modeling of state-of-the-art engineering materials requires a profound understanding of the nonlinear macroscopic material behavior. Especially for heterogeneous materials the effective macroscopic response is amongst others driven by damage effects and the inelastic material behavior of the individual constituents [1]. Since the macroscopic length scale of such materials is significantly larger than the fine-scale structure, a direct modeling of the local structure in a component model is not convenient. Multiscale techniques can be used to predict the effective material behavior. To this end, the authors developed a modeling technique based on representative volume elements (RVE) to predict the effective material behavior on different length scales. The extended finite element method (XFEM) is used to model discontinuities within the material structure independent of the underlying FE mesh. A dual enrichment strategy allows for the combined modeling of kinks (material interfaces) and jumps (cracks) within the displacement field [2]. The gradual degradation of the interface is thereby controlled by a cohesive zone model. In addition to interface failure, a non-local strain driven continuum damage model has been formulated to efficiently detect localization zones within the material phases. An integral formulation introduces a characteristic length scale and assures the convergence of the approach upon mesh refinement [3]. The proposed method allows for an efficient modeling of substantial failure mechanisms within a heterogeneous structure without the need of remeshing or element substitution. Due to the generality of the approach it can be used on different length scales. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
nonfocusing instabilities that exist independently of the well-known modulational instability of the focusing NLS equation. The focusing versus defocusing behavior of scalar NLS fields is a well-known model for the corresponding behavior of pulse transmission in optical fibers in the anomalous (focusing) versus normal (defocusing) dispersion regime [19], [20]. For fibers with birefringence (induced by an asymmetry in the cross section), the scalar NLS fields for two orthogonal polarization modes couple nonlinearly [26]. Experiments by Rothenberg [32], [33] have demonstrated a new type of modulational instability in a birefringent normal dispersion fiber, and he proposes this cross-phase coupling instability as a mechanism for the generation of ultrafast, terahertz optical oscillations. In this paper the nonfocusing plane wave instability in an integrable coupled nonlinear Schr?dinger (CNLS) partial differential equation system is contrasted with the focusing instability from two perspectives: traditional linearized stability analysis and integrable methods based on periodic inverse spectral theory. The latter approach is a crucial first step toward a nonlinear , nonlocal understanding of this new optical instability analogous to that developed for the focusing modulational instability of the sine-Gordon equations by Ercolani, Forest, and McLaughlin [13], [14], [15], [17] and the scalar NLS equation by Tracy, Chen, and Lee [36], [37], Forest and Lee [18], and McLaughlin, Li, and Overman [23], [24]. Received February 9, 1999; accepted June 28, 1999  相似文献   

8.
The problem of the stability of the periodic motion of a non-linear periodic Hamiltonian system is considered in the case of pure imaginary characteristic exponents which also satisfy several fourth-order resonance conditions. Conditions for stability and instability are formulated based on terms of the third order inclusive. Some conclusions generalize results obtained previously [1].  相似文献   

9.
Lower-bound limit and shakedown analysis of periodic composites with the consideration of kinematic hardening are carried out on the representative volume element level. In combination with homogenization theory, the homogenized macroscopic admissible loading domains are determined. Furthermore, the strengths of periodic composites by using elastic perfectly plastic, unlimited and linear limited kinematic hardening material models are calculated and compared. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The aim of this contribution is the numerical determination of macroscopic material properties based on constitutive relationships characterising the microscale. A macroscopic failure criterion is computed using a three dimensional finite element formulation. The proposed finite element model implements the Strong Discontinuity Approach (SDA) in order to include the localised, fully nonlinear kinematics associated with the failure on the microscale. This numerical application exploits further the Enhanced–Assumed–Strain (EAS) concept to decompose additively the deformation gradient into a conforming part corresponding to a smooth deformation mapping and an enhanced part reflecting the final failure kinematics of the microscale. This finite element formulation is then used for the modelling of the microscale and for the discretisation of a representative volume element (RVE). The macroscopic material behaviour results from numerical computations of the RVE. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
12.
S. Ilic  K. Hackl  R. Gilbert 《PAMM》2007,7(1):4020015-4020016
Cancellous bone is a spongy type of bone with voids filled by blood marrow. Without much loss of generality it can be modeled as a material with periodic microstructure where overall parameters can be calculated using homogenization methods. Here the multiscale finite element method is applied and the assumed representative volume element (RVE) is a cube with solid frame and fluid core. From the point of view of the finite element method the RVE is a combination of solid and shell elements. As the acoustic excitation is considered, a complex stiffness matrix and complex displacements appear in the solution of the problem. Calculation of overall properties is repeated for different geometries of the solid frame. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A numerical procedure is developed to determine effective material properties of unidirectional fiber reinforced composites with rhombic fiber arrangements. With the assumption of a periodic micro structure a representative volume element (RVE) is considered, where the phases have isotropic or transversely isotropic material characterizations. The interface between the phases is treated as perfect. The procedure handles the primary non-rectangular periodicity with homogenization techniques based on finite element models. Due to appropriate boundary conditions applied to the RVE elastic effective coefficients are derived. Six different boundary condition states are required to get all coefficients of the stiffness tensor. Results are listed and compared with other publications and good agreements are shown. Furthermore new results are presented, which exhibit the orthotropic behavior of such composites caused by the rhombic fiber arrangement. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this contribution the macroscopic behaviour of additively manufactured Inconel 718 will be identified using a crystal plasticity model on the meso-level. The experimentally observed grain structures will be used to generate a representative volume element. Based on this RVE macroscopic mechanical parameters will be identified and compared with experimental results. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Ivan Lvov 《PAMM》2012,12(1):205-206
A method of evaluating creep response of the multipass weld based on the micro-macro mechanics approach is introduced. Multipass weld microstructure that consists from columnar, coarse and fine grained zones is considered. Materials of these constituents assumed to be isotropic. Weld metal properties of inelastic behavior have general type of symmetry and are described by the anisotropic creep constitutive model. To model the microstructure of the multipass weld metal the representative volume element (RVE) is created for CAE Abaqus. Material properties of weld metal grain type zones are taken from the experiments. Numerical tests on uniform loading of the RVE are performed. Creep material properties for equivalent weld material are found for welds with different number of passes. The symmetry type of the creep material properties of multi-pass weld are evaluated for the equivalent weld material. As an example of macro model analysis of the welding, the creep calculation of the cylindrical shell with the welding under the uniform inner pressure is performed. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In transformation induced plasticity (TRIP) steel a diffusionless austenitic-martensitic phase transformation induced by plastic deformation can be observed, resulting in excellent macroscopic properties. In particular low-alloyed TRIP steels, which can be obtained at lower production costs than high-alloyed TRIP steel, combine this mechanism with a heterogeneous arrangement of different phases at the microscale, namely ferrite, bainite, and retained austenite. The macroscopic behavior is governed by a complex interaction of the phases at the micro-level and the inelastic phase transformation from retained austenite to martensite. A reliable model for low-alloyed TRIP steel should therefore account for these microstructural processes to achieve an accurate macroscopic prediction. To enable this, we focus on a multiscale method often referred to as FE2 approach, see [6]. In order to obtain a reasonable representative volume element, a three-dimensional statistically similar representative volume element (SSRVE) [1] can be used. Thereby, also computational costs associated with FE2 calculations can be significantly reduced at a comparable prediction quality. The material model used here to capture the above mentioned microstructural phase transformation is based on [3] which was proposed for high alloyed TRIP steels, see also e.g. [8]. Computations based on the proposed two-scale approach are presented here for a three dimensional boundary value problem to show the evolution of phase transformation at the microscale and its effects on the macroscopic properties. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Dielectric materials such as electro-active polymers (EAPs) belong to the class of functional materials which are used in advanced industrial environments as sensors or actuators and in other innovative fields of research. Driven by Coulomb-type electrostatic forces EAPs are theoretically able to withstand deformations of several hundred percents. However, large actuation fields and different types of instabilities prohibit the ascend of these materials. One distinguishes between global structural instabilities such as buckling and wrinkling of EAP devices, and local material instabilities such as limit- and bifurcation-points in the constitutive response. We outline variational-based stability criteria in finite electro-elastostatics and design algorithms for accompanying stability checks in typical finite element computations. These accompanying stability checks are embedded into a computational homogenization framework to predict the macroscopic overall response and onset of local material instability of particle filled composite materials. Application and validation of the suggested method is demonstrated by representative model problems. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Dielectric materials such as electro-active polymers (EAPs) belong to the class of functional materials which are used in advanced industrial environments as sensors or actuators and in other innovative fields of research. Driven by Coulomb-type electrostatic forces EAPs are theoretically able to withstand deformations of several hundred percents. However, large actuation fields and different types of instabilities prohibit the ascend of these materials. One distinguishes between global structural instabilities such as buckling and wrinkling of EAP devices, and local material instabilities such as limit- and bifurcation-points in the constitutive response. We outline variational-based stability criteria in finite electro-elastostatics and design algorithms for accompanying stability checks in typical finite element computations. These accompanying stability checks are embedded into a computational homogenization framework to predict the macroscopic overall response and onset of local material instability of particle filled composite materials. Application and validation of the suggested method is demonstrated by a representative model problem. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
Stephan Rudykh 《PAMM》2016,16(1):473-474
We study the coupled behavior in soft active microstructured materials undergoing large deformations in the presence of an external electric or magnetic field. We focus on the role of the microstructures on the coupled behavior, and examine the phenomenon in the composites with (a) periodic composites with rectangular and hexagonal periodic unit cells, and (b) in composites with the random distributions of active particles embedded in a soft matrix. We show that for these similar microstructures exhibit very different responses in terms of the actuation, and the coupling phenomenon. Next, we consider the macroscopic and microscopic instabilities in the active composites. We show that the external field has a significant influence of the instability phenomena, and can stabilize or destabilize the composites depending on the direction relative to composite geometry. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The stress‐strain response of a periodic structure due to an applied eigenstrain field is investigated. The periodic structure allows reduction of the problem to a representative volume element (RVE) problem. A review of Fourier series as a particular method of solving the set of differential equations is given, and an example problem is studied. Results of the latter method are compared to results obtained using discrete Fourier transforms in a different way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号