首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We present a model for the electron system in NbSe3 based on its quasi one-dimensional metallic properties. In a one-dimensional metal phonon drag of 2KF-phonons takes place at temperatures higher than θD, since the phonon-electron scattering rate τ?1ph?el is greater than the phonon-phonon rate τ?1ph?ph. this situation is in contrast to the situation in three dimensional metals, where phonon drag takes place only at very low temperatures. Our model explains the transport properties of the material including the electrical conductivity anistropy, the conductivity in a strong electric field, and the Hall effect data.  相似文献   

2.
The results from a comprehensive investigation of the structure, phase and chemical composition, microhardness, and nanomechanical and tribological properties of chromium-doped coatings of hydrogenised amorphous carbon a-C:H:Cr are presented. The coatings are deposited via reactive magnetron sputtering in an Ar + C2H2 + N2 gas mixture at various volume concentrations of nitrogen and acetylene. It is found that the carbon in the coatings is formed as disordered mixtures of domains with tetrahedral (sp 3) and hexagonal (sp 2) carbon coordinations. In addition, the doping metal in the coating consists of nanosized inclusions of metallic chromium and its carbide and nitride phases. Additional nitrogen doping resulting in the formation of chromium nitride is shown to improve the micromechanical and tribological properties of the obtained coatings.  相似文献   

3.
The structural and electronic properties of lithium intercalated fullerides (of which Li15C60 is the most representative) are still puzzling and unclear. Above 520 K, x-ray/neutron diffraction shows an fcc phase in which the 15 Li atoms clusterize in the octahedral interstices. However, at lower temperatures, a change in the crystalline symmetry and also in the electronic properties takes place as observed from 13C, 7Li/6Li NMR and x-ray diffraction measurements. X-ray diffraction data suggest the presence of two different stable structures: a tetragonal monomeric and an orthorhombic polymerised phase. Detailed 13C magic angle spinning NMR experiments in the latter phase indicate sp 3 bondings among the carbon atoms, whereas the relative (sp 2/sp 3) intensities, together with x-ray data, suggest the C60 polymerization to be a [2+2] cycloaddition. Multiple quantum NMR experiments on 7Li confirm the presence of lithium clusters, as observed by x-ray diffraction in the high temperature phase, also at lower temperatures. However, the inferred cluster size is significantly smaller than that suggested by the stoichiometry. The distortion in the low-T structure of L15C60 is supposed to induce the migration of Li atoms from octahedral to tetrahedral voids, thus accounting for the lower number of Li atoms in the clusters. Further evidence of this scenario is obtained also from preliminary measurements of line shapes and T 1 relaxation times, which exhibit a multiexponential recovery with very different constants that are hardly compatible with a single family of Li atom sites.  相似文献   

4.
Transition metal acetylides, MC2 (M=Fe, Co and Ni), exhibit ferromagnetic behavior of which TC is characteristic of their size and structure. CoC2 synthesized in anhydrous condition exhibited cubic structure with disordered C22- orientation. Once being exposed to water (or air), the particles behave ferromagnetically due to the lengthening of the Co–Co distance by the coordination of water molecules to Co2+ cations. Heating of these particles induces segregation of metallic cores with carbon mantles. Electron beam or 193 nm laser beam can produce nanoparticles with metallic cores covered with carbon mantles.  相似文献   

5.
NMR relaxation rate, T1−1, of the metallic carbon nanotube is discussed based on Tomonaga–Luttinger-liquid theory. It is found that the Coulomb interaction leads to increase of (T1T)−1 by a power law with decreasing temperature, T. The dependence on temperature of (T1T)−1 in the multi-wall nanotube (MWNT) is shown to be strongly suppressed by existence of the metallic shells in the MWNTs.  相似文献   

6.
Magnetic susceptibility (χ) and 51V NMR have been measured in (V1−xTix)2O3 near the phase boundary of the metal–insulator transition. It is established that the transition from antiferromagnetic insulating (AFI) to antiferromagnetic metallic phases near xc≈0.05 is not quantum critical, but is discontinuous with a jump of the transition temperature. In the AFI phase at 4.2 K, we observed the satellite in the zero-field 51V NMR spectrum around 181 MHz in addition to the ‘host’ resonance around 203 MHz. The satellite is also observable in the paramagnetic metallic phase of the x=0.055 sample. We associated the satellite with the V sites near Ti, which are in the V3+-like oxidation state, but has different temperature dependence of the NMR shift from that of the host V site. The host d-spin susceptibility for x=0.055 decreases below ∼60 K, but remains finite in the low-temperature limit.  相似文献   

7.
We have used Raman scattering, elemental analysis, and structural analysis to study the effect of the concentration of incorporated metals (Cu, Ni) on the ratio of sp2/sp3 carbon bonds in composite hydrogen-containing films a-C:H/Cu and a-C:H/Ni, formed by combining plasma-enhanced vapor phase deposition of carbon and sputtering of the metal, using a mixture of argon and methane or acetylene gases. We have shown that formation of a nanosized structure of metallic crystallites (2–5 nm) in the composite films leads to a significant increase in the fraction of disordered sp3-bonded carbon clusters and a decrease in the linear dimensions of the graphite-like carbon clusters. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 3, pp. 344–348, May–June, 2006.  相似文献   

8.
Electrochemical studies have been made of the kinetics and thermodynamics of lithium intercalation into single crystals of NiPS3. Effective diffusion coefficients for lithium in this layered compound were found to be higher than previously reported for powdered NiPS3 cathodes, and very much higher than expected from previous nmr studies. Despite considerable electron transfer in Li+xNiPSx-3, the electronic conductivity does not approach metallic values until x 1.4. The transition to a previously described state of high ionic conductivity is discussed.  相似文献   

9.
Cells were made from Co3O4 and Co2SnO4 and lithium metal and tested to determine reversible lithium capacity. Li is reversibly inserted into Co3O4, as was observed by electrochemistry, coupled with changes of cobalt oxidation state as observed by Co K-edge EXAFS. On lithium insertion the Co3O4 is reduced to yield only metallic cobalt species, and then on lithium removal an oxide of Co is formed. The EXAFS data further showed that the initial reduction was to Co(II) and then to metallic Co, and that both the metallic and oxide phases were disordered, having low co-ordination numbers and large shell spacings. The electrochemical behaviour of the Co2SnO4 cells was closer to that of SnO2 than Co3O4, but did exhibit changes obviously caused by the cobalt. EXAFS on Co2SnO4 cells revealed that the Co is reduced to metallic cobalt on the initial discharge, but does not convert back to an oxide on cycling. Paper presented at the 7th Euroconference on Ionics, Calcatoggio, Corsica, France, Oct. 1–7, 2000.  相似文献   

10.
《Solid State Ionics》2006,177(17-18):1405-1411
Two model compounds, lithium imidazolium (LiIm) and lithium 2-undecylimidazolium (und-LiIm), were synthesized. These materials are chosen as models of potential lithium ion conductors for use as electrolytes in lithium batteries. Solid-state NMR was used to provide information on the microscopic interactions including ionic mobility and ring reorientations which govern the efficiency of conductivity. Lithium imidazolium was mixed with lithium methylsulfonate, generating a doped complex in which a doubly lithiated imidazole ring was inferred based on the 7Li NMR chemical shifts. Our research includes 6,7Li variable temperature MAS NMR experiments at intermediate spinning speeds, relaxation studies to determine spin-lattice relaxation times (T1) of lithium ion hopping, and 2D exchange spectroscopy to determine possible chemical exchange processes. The possibility of 2-site ring reorientation for the doubly lithiated imidazole ring was supported by exchange spectroscopy. Comparisons of spin-lattice relaxation times and corresponding activation energies of the lithium imidazolium and the doped complex point to a higher degree of mobility in the latter.Lithium 2-undecylimidazolium was prepared and exhibited a lower melting point than the parent lithium imidazolium, as expected. This small molecule was chosen as representative of a side-chain functionalized polyethylene-based material. 7Li MAS spectra show mainly the presence of the doubly lithiated imidazole ring in pure und-LiIm, and in the LiCH3SO3–und-LiIm mixture. The data clearly indicate local mobility of the lithium ions in the materials.  相似文献   

11.
The electrochemical properties of rutile-type TixSn1?xO2 solid solutions (x = 0–1.0) as an anode for a lithium–ion battery were investigated using nanosized crystals prepared by an aqueous solution process. The reduction of the crystal size to nanoscale allowed a smooth lithium insertion into the rutile framework at room temperature. The lithium-insertion behavior of TiO2, SnO2, and the solid solutions was evaluated without any structural change of the rutile-type crystal structure in the potential range of 1.2–3.5 V (versus Li/Li+). The interstitial spaces for lithium ions were found to be derived from the crystal structure of the rutile framework and independent of the metal species.  相似文献   

12.
The relationship between structure and nonlinear optical properties in LiCsB6O10 is characterized using single-crystal nuclear magnetic resonance (NMR) and magic-angle spinning (MAS) NMR. Although the quadrupole parameters for B(1) and B(2) sites were obtained using single-crystal NMR, the T 1 values for these atomic sites could not be distinguished in this way. Thus, the structural nature of lithium and boron sites in LiCsB6O10 was investigated using MAS NMR. B(1) and B(2) sites could be distinguished based on the spectrum and T obtained from 11B MAS NMR. In addition, the T 1 and T values and activation energies for 7Li and 11B are compared. No significant changes were seen in the T at the lithium and boron nuclei in LiCsB6O10.  相似文献   

13.
LiTi2O4 anode material for lithium-ion battery has been prepared by a novel one-step solid-state reaction method using Li2CO3, TiO2, and carbon black as raw materials. X-ray diffraction, scanning electron microscopy, energy-dispersive spectrometry, and the determination of electrochemical properties show that the single phase of LiTi2O4 with spinel crystal structure is formed at 850?°C by this new method, and the lattice parameter is about 8.392?Å. The primary particle size of the LiTi2O4 powder is about 0.5–1.0 μm and its morphology is similar to a sphere. The lithium ion insertion voltage of LiTi2O4 anode material is about 1.50 V versus lithium metal, the initial discharge capacity is about 133.6 mAh g-1, the charge–discharge voltage plateau is very flat, and no solid electrolyte interface film is formed when working potential is more than 1.0 V. The reaction reversibility and the cycling stability are excellent, and the high rate performance is good.  相似文献   

14.
Nanoparticle‐based electrodes often suffer from poor electrical properties due to high interparticle resistance, as well as low Coulombic efficiency attributed to large surface area induced parasitic reactions. In order to address this issue, a strategy of encapsulating two kinds of nanoparticles of both metal oxide and metallic nanoparticles is attempted, simultaneously, in microscale carbon cubic shells for highly reversible lithium storage. The unique structure is synthesized by simultaneous reactions of (1) decomposition of crystalline Co2(OH)3Cl microparticle precursor, synthesized in unique eggshell reactor systems, into nanoparticles, (2) partial reduction of CoO into metallic Co by eggshell membrane, (3) carbon coating by chemical vapor deposition facilitated by presence of catalytic Co with carbon released from the eggshell membrane, and (4) microscale carbon shell formed using the Co2(OH)3Cl particles as microtemplates. The carbon shells can prevent the encapsulated mixed nanoparticles from direct contact with electrolyte and reduce undesirable parasitic reactions, and accommodate volumetric variation during cycling. The introduction of metallic Co nanoparticles can reduce interparticle resistance. When evaluated for lithium storage, the unique structures of CoO–Co@C demonstrate superior electrochemical performances in terms of electrode stability and rate performance, as compared to that of pure CoO.  相似文献   

15.
Complex lithium metallates Li2 Me x Zr1 ? x O3 ? δ (Me = Nb, Ti, x = 0.05, 0.1) with iso-and heterovalent substitutions for Zr4+ ions in lithium zirconate are synthesized for the first time using a citrate technique. The inclusion of Ti4+ and Nb5+ ions in the crystal structure of Li2ZrO3 is confirmed by means of X-ray diffraction and NMR. It is shown that in the temperature range of 750–820 K, Li2Ti0.1Zr0.9O3 solid solution has higher conductivity than phases of undoped lithium zirconate.  相似文献   

16.
Polycrystalline samples of lithium borohydride and borodeuteride, LiBH4 and LiBD4, are studied by 2H, 7Li, and 10,11B NMR in 7.04 T and 9.35 T magnetic fields in the temperature range 116–580 K. The 10,11B NMR line shape of the orthorhombic phase of LiBH4 and LiBD4 suggests that first-order quadrupole interaction takes place. The quadrupole coupling constant (QCC) χ q and asymmetry parameter η of the electric field gradient tensor for 11B are described by linear temperature dependences: χ q (11B) = 177 ? 0.24T and η = 0.043 + 0.0014T. The electric field gradient at the positions of boron nuclei is created by external charges, primarily lithium cations. In the range of 388–391 K, the 7Li NMR line shape reflects the coexistence of two phase modifications of LiBH4 and LiBD4 and the occurrence of a reversible first-order phase transition. In the temperature range of 390–530 K, the 7Li NMR line shape represents a first-order quadrupole perturbed spectrum with zero asymmetry parameter and a weakly temperature dependent 7Li QCC. The spin-lattice relaxation time and the NMR line shape of 2H are interpreted in terms of the reorientation of the BD 4 ? anion about their proper symmetry axes C2 and C3.  相似文献   

17.
Singlewall carbon nanotubes (SWNTs) produced by electric-arc and laser ablation methods were characterized by X-ray diffraction before and after the reaction with alkali metals (M=K, Rb, and Cs). Reaction with annealed SWNTs gave MC8 composition at saturation. The alkali metal lattice showed short range order incommensurate with graphene cylinders of SWNTs. X-ray diffractogram simulations have enabled the study of the influence of SWNTs structure on that of intercalation compounds. Chemically-purified bundles, constituted of open SWNTs, can be intercalated inside and between the tubes forming disordered structures. Annealed or pristine bundles were intercalated only between the tubes leading to short or long range ordered structure depending on host crystallinity and alkali metal (K, Rb or Cs). The expansion of the 2D SWNTs lattice after intercalation is comparable to graphite intercalation compounds. Some 2D arrangements of SWNTs and K atoms are proposed and discussed to reproduce XRD results. 13C NMR and ESR studies of annealed doped SWNTs emphasize the fact that the intercalation compounds of SWNTs are metallic.  相似文献   

18.
The size dependence of melting temperature T m of metallic films (tin and copper) on different substrates, including amorphous carbon and another refractory metal (i.e., the dependence of T m on film thickness h) is investigated. It is found that the effect of the interfacial boundary can result in the growth of T m for thin metallic films on carbon substrates with a reduction in film thickness h. For a system with a metallic film on a metallic substrate, the size dependence of T m is less pronounced and T m falls with a reduction in h.  相似文献   

19.
The properties of the solid solution VSe2?xSx 0 ? xnom ? 2 have been investigated for secondary battery application. The phase VSe2 is observed for 0 ? xnom ? 1.2 and the phase V5S8 is found using RX analysis for xnom >1.2. The amount of lithium chemically incorporated in this structure by reaction with n-butyllithium is 2 Li/vanadium for 0 ? xnom ? 0.8 and 1.4 Li/vanadium for V5S8. An electrochemical technique (galvanostatic) indicates that the amount of lithium incorporated depends on the xnom values, the grain size and the discharge rate. The best results are obtained for 0.2 ? xnom ? 0.6 (capacity = 164?172 Ah kg?1 and energy density = 385?465 Wh kg?1).  相似文献   

20.
The local magnetic properties of the V sites in the nonstoichiometric V2O3+x (0 ? x <0.08) have been examined by nuclear magnetic resonance and inelastic spin-flip neutron scattering techniques. The samples with x = 0.01 and 0.02 show a paramagnetic metal (PM)-antiferromagnetic insulator (AFI) transition. In the AFI phase, two distinct 51V NMR signals with hyperfine fields Hn = 184.9±0.5 kOe and 71±1 kOe were observed at 1.8 K, which were assigned as due to V3+ and V3+ sites, respectively. On the other hand, the samples with x = 0.04 and 0.06 were metallic down to 1.4K, and showed a paramagnetic (PM)-antiferromagnetic (AFM) transition at about 10 K. In these samples, a 51V NMR signal with Hn = 58±2 k0e and one with 〈Hn〉 = 9kOe were observed at 1.8 K, which were assigned as due to V3+-like sites and the matrix V sites, respectively. These results are entirely consistent with those obtained from the neutron experiment. We propose that in the metallic phase (0.04 ? x < 0.08) the minority V4+-like sites are magnetically localized in the delocalized V matrix and may be responsible for the antiferromagnetic long range order below 10 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号