共查询到20条相似文献,搜索用时 10 毫秒
1.
Normal and tangential stresses acting over a contact interface of a tire driven on dry sand were investigated to expand the applicability of our model incorporating 2D FE–DEM with proportional–integral–derivative (PID) control. A simple averaging method for contact reaction was introduced: computational segments were defined over the lower half part of the tire circumference that translates without rotation with the tire; then the contact stresses were calculated segment by segment. For the analysis, it was assumed that the tire was in rigid contact mode and that it would travel on the model sand terrain in stationary condition. The integration of normal and tangential contact stresses with respect to the angle of rotation was then applied to calculate the vertical contact load, gross tractive effort, net traction, and running resistance of the tire by parametric (or semi-empirical) analysis. The result of tractive performance obtained through the parametric analysis was found to be similar to the result of tractive performance obtained directly using FE–DEM analysis. A forward shift of the consistent angle of rotation for maximum normal contact stress and that for maximum tangential contact stress with the increase of slip from 22% was also observed in the FE–DEM result. 相似文献
2.
In this paper,an efficien formulation based on the Lagrangian method is presented to investigate the contact–impact problems of f exible multi-body systems.Generally,the penalty method and the Hertz contact law are the most commonly used methods in engineering applications.However,these methods are highly dependent on various non-physical parameters,which have great effects on the simulation results.Moreover,a tremendous number of degrees of freedom in the contact–impact problems will influenc thenumericalefficien ysignificantl.Withtheconsideration of these two problems,a formulation combining the component mode synthesis method and the Lagrangian method is presented to investigate the contact–impact problems in fl xible multi-body system numerically.Meanwhile,the finit element meshing laws of the contact bodies will be studied preliminarily.A numerical example with experimental verificatio will certify the reliability of the presented formulationincontact–impactanalysis.Furthermore,aseries of numerical investigations explain how great the influenc of the finit element meshing has on the simulation results.Finally the limitations of the element size in different regions are summarized to satisfy both the accuracy and efficien y. 相似文献
3.
A method for estimating the three-dimensional (3D) footprint of a 16.9R38 pneumatic tyre was developed. The method was based on measured values of contact pressure at the soil–tyre interface and wheel contact length determined from the contact pressures and the depths and widths of ruts formed in the soil. The 3D footprint was investigated in an area of the field where the pressure sensors of the tyre passed in a soft clay soil. The tyre was instrumented with six miniature pressure sensors, three on the lug face and the remaining three on the under-tread region between two lugs. The instrumented tyre was run at a constant forward speed of 0.27 m/s and 23% slip on a soft soil, 0.48 MPa cone index, 25.6% d.b. moisture content for four wheel load and tyre pressure combination treatments. The 3D footprint assessment derived from soil–tyre interface stress used in this research is a unique methodology, which could precisely relate the trend profile of the 3D footprint to the measured rut depth. The tyre–soil interface contact pressure distributions results showed that as inflation pressure increased the soil strength increased significantly near the centre of the tyre as a compaction increase sensed with the cone penetrometer. 相似文献
4.
Ryohei Takahashi Hiroya Mamori Makoto Yamamoto 《International Journal of Computational Fluid Dynamics》2016,30(2):120-128
A numerical method for simulating gas–liquid–solid three-phase flows based on the moving particle semi-implicit (MPS) approach was developed in this study. Computational instability often occurs in multiphase flow simulations if the deformations of the free surfaces between different phases are large, among other reasons. To avoid this instability, this paper proposes an improved coupling procedure between different phases in which the physical quantities of particles in different phases are calculated independently. We performed numerical tests on two illustrative problems: a dam-break problem and a solid-sphere impingement problem. The former problem is a gas–liquid two-phase problem, and the latter is a gas–liquid–solid three-phase problem. The computational results agree reasonably well with the experimental results. Thus, we confirmed that the proposed MPS method reproduces the interaction between different phases without inducing numerical instability. 相似文献
5.
6.
This paper examines the numerical displacements and stresses developed around a disc under horizontal prescribed displacements
and at the interface separating it from the surrounding elastic soil. Since the geometry of the problem exhibits axial symmetry
and the loading is non-axisymmetric, the semi-analytical FE approach is used as it proves to be efficient and economical.
First, both analytical and numerical expressions for soil reaction are established and compared. Results of comparison show
a very good agreement. Then, for different values of the soil Poisson’s ratio, normal radial stresses, orthoradial stresses
and shear stresses distributions along radial distance reaching 20r
d (r
d is the disc radius) are presented for a disc that has either perfectly smooth or perfectly rough interfaces with the elastic
medium. The paper finishes by showing the effect of the soil Poisson’s ratio as well as the relative soil/interface stiffness
on the stresses developed at the interface locations. 相似文献
7.
Yongsheng Zhao Hongchao Wu Zhifeng Liu Qiang Cheng Congbin Yang 《Nonlinear dynamics》2018,94(1):151-164
The heavy-duty machine tool is usually assumed in the concrete foundation, in which the machine tool-foundation joints have a critical effect on the working accuracy and life of heavy-duty machine tool. This paper proposed a novel contact stiffness model of concrete–steel joint based on the fractal theory. The topography of contact surface exist in concrete–steel joint has a fractal feature and can be described by fractal parameters. Asperities are considered as elastic, plastic deformation in micro-scale. However, the asperities of concrete surface will be crushed when the stress is larger than their yield limit. Then, the force balance of contact surfaces will be broken. Here, an iteration model is proposed to describe the contact state of concrete–steel joint. Because the contact asperities cover a very small proportion (less than 1%), the load on crushed asperities is assumed carried by other no contact asperities. This process will be repeated again and again until the crushed asperities are not being produced under external load. After that, the real contact area, contact stiffness of the concrete–steel joint can be calculated by integrating the asperities of contact surfaces. Nonlinear relationships between contact stiffness and load, fractal roughness parameter G, fractal dimension D can be revealed based on the presented model. An experimental setup with concrete–steel test-specimens is designed to validate the proposed model. Results indicate that the theoretical vibration mode shapes agree well with the experimental variation mode shapes. The errors between theoretical and experimental natural frequencies are less than 4.18%. The presented model can be used to predict the contact stiffness of concrete–steel joint, which will provide a theoretical basis for optimizing the connection characteristic of machine tool-concrete foundation. 相似文献
8.
Multibody modelling of pedestrian collisions requires the definition of contact–impact between the pedestrian and the vehicle. An examination of relevant impact test data reveals large rate-dependent components of the reaction force, permanent indentation, and concomitant energy loss. Contact–impact models previously used in simulations of pedestrian impacts typically have not adequately modelled one, two or all three of these phenomena. This paper presents a phenomenological contact–impact model based on the Hunt–Crossley model of impact, which includes rate-dependent damping, and is extended to include permanent indentation. The proposed model suitably characterises impact test data in a form that can also be implemented in the multibody simulation code MADYMO (TASS-Safe, Netherlands). The proposed contact–impact model was used to characterise the impact between a legform and the bumper of a vehicle, based on two impact tests conducted at different impact speeds. A single contact–impact definition in MADYMO closely reproduced the dynamics of both tests. The proposed model may be suitable in a wide range of impact conditions where the impact is modelled using multibody techniques and it is practicable to conduct impact tests as part of the modelling process. 相似文献
9.
The interaction of a tire with a soft terrain has multiple sources of uncertainties such as the mechanical properties of the terrain, and the interfacial properties between the tire and the terrain. These uncertainties are best characterized using statistical methods such as the development of stochastic models of tire–soil interaction. The quality of the models can be assessed via statistical validation measures or metrics. Although validation of stochastic tire–soil interaction models has recently been reported with good results, it involves longitudinal slip only without considering lateral slip which can occur simultaneously with longitudinal motion. This paper presents results of the validation of a simple stochastic tire–soil interaction model for the more complicated case of combined slip. The statistical methods used for validation include the development of a Gaussian process metamodel, the calibration of model parameters using the approach of the maximum likelihood estimate in conjunction with new test data. The validation of the calibrated model, when compared with test data, is obtained using four validation metrics with good results. 相似文献
10.
《力学快报》2016,(4)
To systematically study the vehicle–bridge coupled dynamic response and its change rule with different parameters, a vehicle model with seven degrees of freedom was built and the total potential energy of vehicle space vibration system was deduced. Considering the stimulation of road roughness, the dynamic response equation of vehicle–bridge coupled system was established in accordance with the elastic system principle of total potential energy with stationary value and the ‘‘set-in-right-position' rule. On the basis of the self-compiled Fortran program and bridge engineering, the dynamic response of longspan continuous girder bridge under vehicle load was studied. This study also included the calculation of vehicle impact coefficient, evaluation of vibration comfort, and analysis of dynamic response parameters.Results show the impact coefficient changes with lane number and is larger than the value calculated by the ‘‘general code for design of highway bridges and culverts(China)'. The Dieckmann index of bridge vibration is also related to lane number, and the vibration comfort evaluation is good in normal conditions.The relevant conclusions from parametric analyses have practical significance to dynamic design and daily operation of long-span continuous girder bridges in expressways. Safety and comfort are expected to improve significantly with further control of the vibration of vehicle–bridge system. 相似文献
11.
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well. 相似文献
12.
Gui-Bo Zheng Ning-De Jin Xiao-Hui Jia Peng-Ju Lv Xing-Bin Liu 《International Journal of Multiphase Flow》2008
In order to solve the flowrate measurement problem of gas–liquid two phase flow widely existing in gas wells of Daqing oil field in China, a new method has been developed, which is based on the combination instrument of turbine flowmeter and conductance sensor with petal type concentrating flow diverter. The turbine and conductance signals under 104 different flow conditions have been acquired through oil–gas–water three phase flow loop experimental facility. To determine the flow pattern in measurement channel, attractor morphologic characteristics are extracted from the conductance signals. For the total flowrate measurement, based on the turbine fluctuant signals of gas–liquid two phase flow, a statistical model with the average error of 7.9% is set up. With regard to the water cut measurement, the characteristics in time and frequency domains are extracted from the fluctuant conductance signals, and then employing the Support Vector Machine (SVM) soft measurement model used in high-dimension data fitting, the water cut prediction is realized with the average error of 0.038. The results show that the combination instrument of turbine flowmeter and conductance sensor with petal type concentrating flow diverter would be useful in measuring the total flowrate and water cut of gas–liquid two phase flow in gas production wells. 相似文献
13.
14.
A new method for obtaining strong S-boxes based on chaotic map and Teaching–Learning-Based Optimization (TLBO) is presented in this paper. Our method presents eight rounds; each round contains two transformations: row left shifting and columnwise rotation. The vectors for the transformations are different from one round to another, and they are controlled by two keys to the logistic map. These two keys are optimized by using TLBO which aims to construct a strong S-box that satisfies to the criteria set in advance. Test for the following criteria such as bijectivity, nonlinearity, strict avalanche criteria, equiprobable inputs/outputs XOR distribution is analyzed. Additionally, we will provide many comparisons with other S-boxes and test of the sensitivity to keys. The results of performance test show that the proposed design S-boxes presents good cryptography proprieties and can resist to several attacks. 相似文献
15.
16.
The multibody simulation of railway dynamics needs a reliable efficient method to evaluate the contact points between wheel and rail. In this work some methods to evaluate position of contact points are presented. The aim is to develop a method which is reliable in terms of precision and can be implemented on-line, assuring a calculation time consistent with real-time calculations of multibody dynamics. 相似文献
17.
《International Journal of Solids and Structures》2003,40(12):3089-3105
A three-dimensional free vibration analysis of circular and annular plates is presented via the Chebyshev–Ritz method. The solution procedure is based on the linear, small strain, three-dimensional elasticity theory. Selecting Chebyshev polynomials which can be expressed in terms of cosine functions as the admissible functions, a convenient governing eigenvalue equation can be derived through the Ritz method. According to the geometric properties of circular and annular plates, the vibration is divided into three distinct categories: axisymmetric vibration, torsional vibration and circumferential vibration. Each vibration category can be further subdivided into the antisymmetric and symmetric ones in the thickness direction. Convergence and comparison study demonstrated the high accuracy and efficiency of the present method. The present approach shows a distinct advantage over some other Ritz solutions in that stable numerical operation can be guaranteed even when a large number of admissible functions is employed. Therefore, not only lower-order but also higher-order eigenfrequencies can be obtained by using sufficient terms of the Chebyshev polynomials. Finally, some valuable results for annular plates with one or both edges clamped are given and discussed in detail. 相似文献
18.
S. Guenfoud S.V. Bosakov D.F. Laefer 《International Journal of Solids and Structures》2010,47(14-15):1822-1829
In this article, Ritz’s method is used to calculate with unprecedented accuracy the displacements related to a deformable rectangular plate resting on the surface of an elastic quarter-space. To achieve this required three basic steps. The first step involved the study of Green’s function describing the vertical displacements of the surface of an elastic quarter-space due to vertical force applied on its surface. For this case, an explicit formula was obtained by analytically resolving a complicated integral that did not previously have an analytical solution. The second step involved the study of the coupled system of a plate and an elastic quarter-space. This portion focused on determining reactive forces in the contact zone based on Hetenyi’s solution. After determination of the reactive forces, certain features were attributed to the plate’s edges. The final step involved the application of Ritz’s method to determine the deflections of the plate resting on the surface of the quarter-space. Finally, an example calculation and validation of results are given. This is the first semi-analytical solution proposed for this type of contact problem. 相似文献
19.
《International Journal of Solids and Structures》2014,51(21-22):3642-3652
Normal contact deformation of an asperity and a rigid flat is studied within an axisymmetric finite element model. The asperity features a sinusoidal profile and is elastic–plastic with linear strain hardening. Influences of geometrical (asperity height and width) and loading (the maximum interference) parameters on frictionless contact responses are explored for both loading and unloading. Dimensionless expressions for contact size and pressures covering a large range of interference and asperity ratio values are obtained in power-law forms. Results show the mean contact pressure after fully-plastic contact reaches a plateau only for small asperity ratios, while it continues increasing for large asperity ratios. The residual depth is found to be associated with plastically dissipated energy. 相似文献
20.
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart--Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies. 相似文献