首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We propose an improvement to the reduced basis method for parametric partial differential equations. An assumption of affine parameterization leads to an efficient offline–online decomposition when the problem is solved for many different parametric configurations. We consider an advection–diffusion problem, where the diffusive term is non-affinely parameterized and treated with a two-level affine approximation given by the empirical interpolation method. The offline stage and a posteriori error estimation is performed using the coarse-level approximation, while the fine-level approximation is used to perform a correction iteration that reduces the actual error of the reduced basis approximation while keeping the same certified error bounds.  相似文献   

2.
Parameters in mathematical models for glioblastoma multiforme (GBM) tumour growth are highly patient specific. Here, we aim to estimate parameters in a Cahn–Hilliard type diffuse interface model in an optimised way using model order reduction (MOR) based on proper orthogonal decomposition (POD). Based on snapshots derived from finite element simulations for the full-order model (FOM), we use POD for dimension reduction and solve the parameter estimation for the reduced-order model (ROM). Neuroimaging data are used to define the highly inhomogeneous diffusion tensors as well as to define a target functional in a patient-specific manner. The ROM heavily relies on the discrete empirical interpolation method, which has to be appropriately adapted in order to deal with the highly nonlinear and degenerate parabolic partial differential equations. A feature of the approach is that we iterate between full order solvers with new parameters to compute a POD basis function and sensitivity-based parameter estimation for the ROM problems. The algorithm is applied using neuroimaging data for two clinical test cases, and we can demonstrate that the reduced-order approach drastically decreases the computational effort.  相似文献   

3.
We introduce an efficient level set framework to parameter estimation problems governed by parametrized partial differential equations. The main ingredients are: (i) an “admissible region” approach to parameter estimation; (ii) the certified reduced basis method for efficient and reliable solution of parametrized partial differential equations; and (iii) a parameter-space level set method for construction of the admissible region. The method can handle nonconvex and multiply connected regions. Numerical results for two examples in design and inverse problems illustrate the versatility of the approach.  相似文献   

4.
We study an initial boundary value problem of a model describing the evolution in time of diffusive phase interfaces in solid materials, in which martensitic phase transformations driven by configurational forces take place. The model was proposed earlier by the authors and consists of the partial differential equations of linear elasticity coupled to a nonlinear, degenerate parabolic equation of second order for an order parameter. In a previous paper global existence of weak solutions in one space dimension was proved under Dirichlet boundary conditions for the order parameter. Here we show that global solutions also exist for Neumann boundary conditions. Again, the method of proof is only valid in one space dimension.  相似文献   

5.
An improved unscented Kalman filter approach is proposed to enhance online state of charge estimation in terms of both accuracy and robustness. The goal is to address the drawback associated with the unscented Kalman filter in terms of its requirement for an accurate model and a priori noise statistics. Firstly, Li-ion battery modelling and offline parameter identification is performed. Secondly, a sensitivity analysis experiment is designed to verify which model parameter has the greatest influence on state of charge estimation accuracy, in order to provide an appropriate parameter for the model adaptive algorithm. Thirdly, an improved unscented Kalman filter approach, composed of a model adaptive algorithm and a noise adaptive algorithm, is introduced. Finally, the results are discussed, which reveal that the proposed approach’s estimation error is less than 1.79% with acceptable robustness and time complexity.  相似文献   

6.
The challenges of understanding the impacts of air pollution require detailed information on the state of air quality. While many modeling approaches attempt to treat this problem, physically-based deterministic methods are often overlooked due to their costly computational requirements and complicated implementation. In this work we extend a non-intrusive Reduced Basis Data Assimilation method (known as PBDW state estimation) to large pollutant dispersion case studies relying on equations involved in chemical transport models for air quality modeling. This, with the goal of rendering methods based on parameterized partial differential equations (PDE) feasible in air quality modeling applications requiring quasi-real-time approximation and correction of model error in imperfect models. Reduced basis methods (RBM) aim to compute a cheap and accurate approximation of a physical state using approximation spaces made of a suitable sample of solutions to the model. One of the keys of these techniques is the decomposition of the computational work into an expensive one-time offline stage and a low-cost parameter-dependent online stage. Traditional RBMs require modifying the assembly routines of the computational code, an intrusive procedure which may be impossible in cases of operational model codes. We propose a less intrusive reduced order method using data assimilation for measured pollution concentrations, adapted for consideration of the scale and specific application to exterior pollutant dispersion as can be found in urban air quality studies. Common statistical techniques of data assimilation in use in these applications require large historical data sets, or time-consuming iterative methods. The method proposed here avoids both disadvantages. In the case studies presented in this work, the method allows to correct for unmodeled physics and treat cases of unknown parameter values, all while significantly reducing online computational time.  相似文献   

7.
Reduced basis methods allow efficient model reduction of parametrized partial differential equations. In the current paper, we consider a reduced basis method based on an iterative Dirichlet–Neumann coupling for homogeneous domain decomposition of elliptic PDEʼs. We gain very small basis sizes by an efficient treatment of problems with a-priori known geometry. Moreover iterative schemes may offer advantages over other approaches in the context of parallelization. We prove convergence of the iterative reduced scheme, derive rigorous a-posteriori error bounds and provide a full offline/online decomposition. Different methods for basis generation are investigated, in particular a variant of the POD-Greedy procedure. Experiments confirm the rigor of the error estimators and identify beneficial basis construction procedures.  相似文献   

8.
Inspired by the reduced basis approach and modern numerical multiscale methods, we present a new framework for an efficient treatment of heterogeneous multiscale problems. The new approach is based on the idea of considering heterogeneous multiscale problems as parametrized partial differential equations where the parameters are smooth functions. We then construct, in an offline phase, a suitable localized reduced basis that is used in an online phase to efficiently compute approximations of the multiscale problem by means of a discontinuous Galerkin method on a coarse grid. We present our approach for elliptic multiscale problems and discuss an a posteriori error estimate that can be used in the construction process of the localized reduced basis. Numerical experiments are given to demonstrate the efficiency of the new approach.  相似文献   

9.
In this paper we study a coupled non-linear system of partial differential equations that models the dynamics of structural phase transitions in a one-dimensional non-viscous and heat-conducting solid. The corresponding Helmholtz free energy density is assumed in Ginzburg–Landau form; to allow for phase transitions and hysteresis phenomena, it is not assumed convex in the order parameter. It is shown that the solution of the system depends continuously upon the data, and we prove an existence result for an associated optimal control problem.  相似文献   

10.
We use asymptotically optimal adaptive numerical methods (here specifically a wavelet scheme) for snapshot computations within the offline phase of the Reduced Basis Method (RBM). The resulting discretizations for each snapshot (i.e., parameter-dependent) do not permit the standard RB ‘truth space’, but allow for error estimation of the RB approximation with respect to the exact solution of the considered parameterized partial differential equation. The residual-based a posteriori error estimators are computed by an adaptive dual wavelet expansion, which allows us to compute a surrogate of the dual norm of the residual. The resulting adaptive RBM is analyzed. We show the convergence of the resulting adaptive greedy method. Numerical experiments for stationary and instationary problems underline the potential of this approach.  相似文献   

11.
In product development, engineers simulate the underlying partial differential equation many times with commercial tools for different geometries. Since the available computation time is limited, we look for reduced models with an error estimator that guarantees the accuracy of the reduced model. Using commercial tools the theoretical methods proposed by G. Rozza, D.B.P. Huynh and A.T. Patera [Reduced basis approximation and a posteriori error estimation for affinely parameterized elliptic coercive partial differential equations, Arch. Comput. Methods Eng. 15 (2008), pp. 229–275] lead to technical difficulties. We present how to overcome these challenges and validate the error estimator by applying it to a simple model of a solenoid actuator that is a part of a valve.  相似文献   

12.
《Comptes Rendus Mathematique》2014,352(7-8):661-666
In this paper, we extend the recently developed reduced collocation method [3] to the nonlinear case, and propose two analytical preconditioning strategies. One is parameter independent and easy to implement, the other one has the traditional affinity with respect to the parameters, which allows an efficient implementation through an offline–online decomposition. Overall, preconditioning improves the quality of the error estimation uniformly on the parameter domain, and speeds up the convergence of the reduced solution to the truth approximation.  相似文献   

13.
We employ the reduced basis method as a surrogate model for the solution of optimal control problems governed by parametrized partial differential equations (PDEs) and develop rigorous a posteriori error bounds for the error in the optimal control and the associated error in the cost functional. The proposed bounds can be efficiently evaluated in an offline–online computational procedure. We present numerical results that confirm the validity of our approach.  相似文献   

14.
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the α-stable distribution, g-and-k distribution, and the stochastic volatility model with α-stable returns, using both real and synthetic data.  相似文献   

15.
We propose a nonintrusive reduced‐order modeling method based on the notion of space‐time‐parameter proper orthogonal decomposition (POD) for approximating the solution of nonlinear parametrized time‐dependent partial differential equations. A two‐level POD method is introduced for constructing spatial and temporal basis functions with special properties such that the reduced‐order model satisfies the boundary and initial conditions by construction. A radial basis function approximation method is used to estimate the undetermined coefficients in the reduced‐order model without resorting to Galerkin projection. This nonintrusive approach enables the application of our approach to general problems with complicated nonlinearity terms. Numerical studies are presented for the parametrized Burgers' equation and a parametrized convection‐reaction‐diffusion problem. We demonstrate that our approach leads to reduced‐order models that accurately capture the behavior of the field variables as a function of the spatial coordinates, the parameter vector and time. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

16.
We study rates of convergence in central limit theorems for partial sums of polynomial functionals of general stationary and asymptotically stationary Gaussian sequences, using tools from analysis on Wiener space. In the quadratic case, thanks to newly developed optimal tools, we derive sharp results, i.e. upper and lower bounds of the same order, where the convergence rates are given explicitly in the Wasserstein distance via an analysis of the functionals’ absolute third moments. These results are tailored to the question of parameter estimation, which introduces a need to control variance convergence rates. We apply our result to study drift parameter estimation problems for some stochastic differential equations driven by fractional Brownian motion with fixed-time-step observations.  相似文献   

17.
For a class of entire functions we study the problem of estimation of the order of growth of functions on the real axis. This problem is important for the justification of the integral representation of bounded solutions to certain partial differential equations considered in other papers of the authors. In order to obtain an estimate of the order of growth of a function on the real axis, we use the method of differential equations. The method is based, on one hand, on the construction of a system of first-order ordinary differential equations whose solution is a vector function of traces of function and its derivatives on the real axis. On the other hand, under the respective change of variables in the system of equations, we obtain an estimate of the solution to the system of equations for a large positive values of the argument. The obtained estimate is non-trivial and shows the way a complex parameter of a power series affects the order of growth of a function.  相似文献   

18.
We prove global existence of a solution to an initial and boundary‐value problem for a highly nonlinear PDE system. The problem arises from a thermo‐mechanical dissipative model describing hydrogen storage by use of metal hydrides. In order to treat the model from an analytical point of view, we formulate it as a phase transition phenomenon thanks to the introduction of a suitable phase variable. Continuum mechanics laws lead to an evolutionary problem involving three state variables: the temperature, the phase parameter and the pressure. The problem thus consists of three coupled partial differential equations combined with initial and boundary conditions. The existence and regularity of the solutions are here investigated by means of a time discretization—textita priori estimates—passage to the limit procedure joined with compactness and monotonicity arguments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Jan Mohring 《PAMM》2014,14(1):23-26
Designing whole machines or processes you may need both, an integrated dynamic simulation of all components on system level and a detailed analysis of how the macroscopic behavior of a component depends on geometry and material parameters. The former analysis is usually based on systems of differential algebraic equations representing a component by not more than a few hundred states and requires tools like Matlab-Simulink® or Dymola®. The latter analysis solves discretized partial differential equations with several 100,000 degrees of freedom using finite element software like Ansys® or Comsol®. Model reduction bridges the gap between the two worlds providing small state space models with approximately the same input-output behavior as the original large finite element models. Building systems from generic components, e.g. a gas transport network from pipeline models with variable length, or optimizing the design of a device with respect to mechanical or thermal properties, we need parametric reduced models. The idea is to reduce FE models offline for selected parameter sets and to generate models for new parameters by cheap interpolation rather than expensive reduction. The different approaches to parametric linear model reduction may be divided into three classes [1]. Interpolation of transfer functions is well suited for parabolic or highly damped hyperbolic problems. However, poles are duplicated rather than shifted, which is unacceptable for weakly damped hyperbolic problems like in mechanics. The second class of methods look for a basis of state space covering system behavior over the full range of parameters. They share the critical assumption that number and meaning of states do not change with the parameters. In terms of finite elements this means that the meshes for different design parameters are morphed variants of the same reference mesh.This may become a severe restriction in practice when automatic meshing is to be applied to complicated geometries. Therefore, we propose a method from the third class, which is based on interpolating reduced system matrices [2]. Only those parts of the mesh need to share a constant topology where nodal inputs are applied and outputs are collected. The inner mesh, however, may change for different parameters. The main challenges arise from the fact that state space representations of a system are unique only up to a change of basis and that interpolating matrices which refer to non-fitting bases may cause arbitrary errors. In the article we will show how problems like leaving and entering modes or eigenvalue crossing can be overcome by using normal forms and eigenvalue tracking in parameter space. The method, which is implemented in the Fraunhofer Model Reduction Toolbox, is applied to a parametric model of a mechanical device the eigenfrequencies of which have to be kept away from some dominant excitation frequencies. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Forward-dynamics simulations of three-dimensional continuum-mechanical skeletal muscle models are a complex and computationally expensive problem. Considering a fully dynamic modelling framework based on the theory of finite elasticity is challenging as the muscles' mechanical behaviour requires to consider a highly nonlinear, viscoelastic and incompressible material behaviour. The governing equations yield a nonlinear second-order differential algebraic equation (DAE), which represents a challenge to model order reduction (MOR) techniques. This contribution shows the results of the offline phase that could be obtained so far by applying a combination of the proper orthogonal decomposition (POD) and the discrete empirical interpolation method (DEIM). (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号