首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The lattice Boltzmann method (LBM) has been used to solve the energy equation of a transient conduction–radiation heat transfer problem in a two dimensional Cartesian enclosure filled with an emitting, absorbing and scattering media. The control volume finite element method (CVFEM) is used to obtain the radiative information. Based on this new nonlinear hybrid algorithm, the effects of various influencing parameters on the transient thermal response such as the scattering albedo, the conduction–radiation parameter, and the wall emissivity are studied on the distributions of temperature, radiative heat fluxes. Numerical results are presented as compared with other published works and they are found to be in satisfactory agreement. The advantages of the proposed numerical approach include, among others, simple implementation on a computer, accurate CPU time and capability of stable simulation. Therfore, the method can capture fundamental behaviours in thermal flows of engineering interest, in addition it will have computaional advantages when the geometry is more complex.  相似文献   

2.
A two-dimensional steady-sate analysis of semi-infinite brittlecrack growth at a constant subcritical rate in an unboundedfully-coupled thermoelastic solid under mixed-mode thermomechanicalloading is made. The loading consists of normal and shear tractionsand heat fluxes applied as point sources (line loads in theout-of-plane direction). A related problem is solved exactly in an integral transformspace, and robust asymptotic forms used to reduce the originalproblem to a set of integral equations. The equations are partiallycoupled and exhibit operators of both Cauchy and Abel types,yet can be solved analytically. The temperature change field at a distance from the moving crackedge is then constructed, and its dominant term is found tobe controlled by the imposed heat fluxes. The role of this termis, indeed, enhanced if the heat fluxes serve to render thecrack as a net heat source/sink for the solid, as opposed tobeing a transmitter of heat across its plane. More generally,the influence of the thermoelastic coupling on this field, aswell as other functions, is found to increase with crack speed.  相似文献   

3.
The present paper is concerned with the study of flow and heat transfer characteristics in the unsteady laminar boundary layer flow of an incompressible viscous fluid over continuously stretching permeable surface in the presence of a non-uniform heat source/sink and thermal radiation. The unsteadiness in the flow and temperature fields is because of the time-dependent stretching velocity and surface temperature. Similarity transformations are used to convert the governing time-dependent nonlinear boundary layer equations for momentum and thermal energy are reduced to a system of nonlinear ordinary differential equations containing Prandtl number, non-uniform heat source/sink parameter, thermal radiation and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge–Kutta–Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the unsteadiness parameter, thermal radiation, suction/injection parameter, non-uniform heat source/sink parameter on flow and heat transfer characteristics as well as on the local Nusselt number are shown graphically.  相似文献   

4.
A mock up of Huygens probe with 76 channels acquisition has been developed at University of Padova and successfully flown with a stratospheric space balloon from Italian Space Agency Base in Trapani on May 30th 2002. Temperature sensors have monitored temperature profiles in critical points of electronics, batteries and structure during raise at 40 km altitude, floating and parachuted descent. A thermal model of the probe has been implemented taking into consideration incoming external fluxes (solar direct, albedo and radiative heat fluxes), internal heat fluxes generation and convective heat transfer with atmosphere as a function of probe altitude. For the evaluation of convective fluxes and probe spinning rates an algebraic turbulent model, developed by the present authors, has been employed. This model is suitable to predict effects such as flow curvature and separation and solid boundary rotations. Simulation results have been utilized during project phase to optimize thermal paths in order to keep critical components in the allowable temperature range and for post flight analysis of mission data. These data show that passive thermal control of the probe has performed as expected contributing to a extremely successful scientific flight.  相似文献   

5.
Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non‐linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame‐invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non‐linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non‐linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame‐invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non‐linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This present study consists of a numerical investigation of transient heat transfer in channel flow of an electrically conducting variable viscosity Boussinesq fluid in the presence of a magnetic field and thermal radiation. The temperature dependent nature of viscosity is assumed to follow an exponentially model and the system exchanges heat with the ambient following Newton’s law of cooling. The governing nonlinear equations of momentum and energy transport are solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that combined effect of thermal radiation, magnetic field, viscosity variation and convective cooling have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

8.
The plane steady contact problem of thermoelasticity when there is heat generation from friction, which arises when an infinite cylindrical punch moves over the surface of an elastic half-space along its generatrix, is considered. It is assumed that heat exchange between the free boundary of the half-space and the surrounding medium obeys Newton's law, while the condition for ideal thermal contact exists in the region in which the solids interact. The problem is reduced to a system of three integral equations in the heat fluxes and temperature. The effect of the thermal and mechanical properties of the cylinder and the half-space on the main contact characteristics is investigated numerically.  相似文献   

9.
A package of calculation models and numerical algorithms for investigating the thermal and mechanical effects of radiation fluxes of different physical kinds and shock waves from powerful explosions on thin-walled multilayer structures in aircraft is proposed. It is assumed that these effects can be reduced to non-uniform heating of the structure, alteration of its thickness and the formation of an unsteady pressure profile on the surface. An explicit finite-difference scheme with second-order of accuracy with respect to the time and spatial variables is used to integrate numerically the equations of motion of an orthotropic, non-uniformly heated shell of variable thickness. The results of calculations of the combined thermal effect of radiation fluxes and an unsteady shock-wave pressure on an orthotropic panel, freely supported along its contour, are presented.  相似文献   

10.
Non-Darcy flow and heat characteristics over a stretching sheet is presented here by taking into account of Ohmic dissipation and thermal radiation effects. The governing fundamental equations are first transformed into system of ordinary differential equations using self-similarity transformation and they are then solved numerically by using the fifth-order Runge–Kutta–Fehlberg method with shooting technique for some values of the physical parameters. Important features of the flow and heat transfer characteristic for different values of thermal radiation, magnetic and electric fields are analyzed and discussed. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results for the velocity and temperature profiles for a prescribed magnetic field and electric field parameter as well as the development of the local skin-friction coefficient and local Nusselt number with radiation parameters are reported graphically for various parametric conditions to show interesting aspects of the numerical solution.  相似文献   

11.
Analytical study for electromagnetothermoelastic behaviors of a hollow cylinder composed of functionally graded piezoelectric material (FGPM), placed in a uniform magnetic field, subjected to electric, thermal and mechanical loads are presented. For the case that the electric, magnetic, thermal and mechanical properties of the material obey an identical power law in the radial direction, exact solutions for electric displacement, stresses, electric potential and perturbation of magnetic field vector in the FGPM hollow cylinder are determined by using the infinitesimal theory of electromagnetothermoelasticity. Some useful discussions and numerical examples are presented to show the significant influence of material inhomogeneity, and adopting a certain value of the inhomogeneity parameter β and applying suitable electric, thermal and mechanical loads can optimize the FGPM hollow cylindrical structures. This will be of particular importance in modern engineering design.  相似文献   

12.
The interaction between a round inclusion and a crack under thermomechanical loading is analyzed based on a modified body force method. The traction-free condition on the crack line is mended by adding the resultant force induced by thermal stress to the force equilibrium equations, so that the coupling of mechanical and thermal loads could be taken into account. The series of integral equations can be discretized to a set of linear equations. Stress intensity factors (SIFs) are obtained through solving the linear equations. The calculated results in this paper are compared to those in open references to validate the method and code. The method is applied to a case of FGH95 PM superalloy containing Al2O3 inclusions under mechanical and thermal loads. The results show that the thermal load has little effect on SIF, while the mechanical load is the dominant factor.  相似文献   

13.
A bimaterial containing an interface crack and consisting of a homogeneous material and a functionally graded material (FGM) with a system of small internal cracks is considered. The thermal fracture of the biomaterial under the action of a heat flux applied to it at infinity is investigated. The problem is studied in the case where the interface crack is much larger than the internal ones. It is assumed that the thermal properties of the FGM are continuous functions of the thickness coordinate. Asymptotic analytical formulas for the thermal stress intensity factors (TSIFs) at the tips of the interface crack are obtained as series in a small parameter (the ratio between sizes of the internal and interface cracks). Then, the critical heat fluxes and the angles of propagation direction of the interface crack are calculated using the criterion of maximum circumferential stress. A parametric analysis shows that the propagation direction of the interface crack depends on the location and orientation of the system of internal cracks. The parameters of inhomogeneity of the FGM affect the value of TSIFs and, hence, the deflection angle of the interface crack.  相似文献   

14.
During the flash dehydroxylation of powdered kaolinite it is desirable that a rapidly propagating thermal wave penetrates the cold powder particles in a way that raises the particle interior to the reaction temperature of 600°C without the particle exterior being heated beyond 1000°C. In a production unit this is achieved by performing the heat treatment in a device where particles are heated by convection from hot gas and are subject to heat loss by thermal radiation to cool walls. This paper concerns the fundamental heat transfer problem of the process, decoupled from the thermal effects of the dehydroxylation reaction. Using a plate as the approximation for the particle shape a semi-analytical solution for the plate temperature distribution is obtained as a function of the five dimensionless process parameters: Biot number, radiation number, wall/gas and particle/gas temperature ratios and mode of convection. Accuracy is demonstrated by comparison with an existing numerical solution for the limiting case of pure radiative heating of a plate initially at absolute zero.  相似文献   

15.
16.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

17.
18.
In this paper, the problem of unsteady laminar two-dimensional boundary layer flow and heat transfer of an incompressible viscous fluid in the presence of thermal radiation, internal heat generation or absorption, and magnetic field over an exponentially stretching surface subjected to suction with an exponential temperature distribution is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. New numerical method using Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.  相似文献   

19.
In the framework of a free molecular regime, we consider the problem of heat and mass transfer in a long channel of constant elliptical cross-section. The diffuse reflection model is used as the boundary condition. The distributions over the channel cross-section are obtained for the mass velocity of a gas and the heat flux vector. Some analytical method is proposed for finding the heat and mass fluxes through the channel cross-section.  相似文献   

20.
The group theoretic method is applied for solving problem of combined magneto-hydrodynamic heat and mass transfer of non-Darcy natural convection about an impermeable horizontal cylinder in a non-Newtonian power law fluid embedded in porous medium under coupled thermal and mass diffusion, inertia resistance, magnetic field, thermal radiation effects. The application of one-parameter groups reduces the number of independent variables by one and consequently, the system of governing partial differential equations with the boundary conditions reduces to a system of ordinary differential equations with appropriate boundary conditions. The ordinary differential equations are solved numerically for the velocity using shooting method. The effects of magnetic parameter M, Ergun number Er, power law (viscosity) index n, buoyancy ratio N, radiation parameter Rd, Prandtl number Pr and Lewis number Le on the velocity, temperature fields within the boundary layer, heat and mass transfer are presented graphically and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号