首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Feedforward control is a popular strategy of active noise/vibration control. In well-damped noise/vibration systems, path transfer functions from actuators to sensors can be modeled by finite impulse response (FIR) filters with negligible errors. It is possible to implement noninvasive model independent feedforward control by a recently proposed method called orthogonal adaptation. In lightly damped noise/vibration systems, however, path transfer functions have infinite impulse responses (IIRs) that cause difficulties in design and implementation of broadband feedforward controllers. A major source of difficulties is model error if IIR path transfer functions are approximated by FIR filters. In general, active control performance deteriorates as model error increases. In this study, a new method is proposed to design and implement model independent feedforward controllers for broadband in lightly damped noise/vibration systems. It is shown analytically that the proposed method is able to drive the convergence of a noninvasive model independent feedforward controller to improve broadband control in lightly damped noise/vibration systems. The controller is optimized in the minimum H2 norm sense. Experiment results are presented to verify the analytical results.  相似文献   

2.
An extended finite element transfer matrix method, in combination with stiffness equation transfer, is applied to dynamic response analysis of the structures under periodic excitations. In the present method, the transfer of state vectors from left to right in a combined finite element-transfer matrix (FE-TM) method is changed into the transfer of general stiffness equations of every section from left to right. This method has the advantages of reducing the order of standard transfer equation systems, and minimizing the propagation of round-off errors occurring in recursive multiplication of transfer and point matrices. Furthermore, the drawback that in the ordinary FE-TM method, the number of degrees of freedom on the left boundary be the same on the right boundary, is now avoided. A FESET program based on this method using microcomputers is developed. Finally, numerical examples are presented to demonstrate the accuracy as well as the potential of the proposed method for steady state vibration response analysis of structures.  相似文献   

3.
The random phase errors of the optical carriers are discussed and controlled for passive millimeter-wave sparse aperture (PMMW SA) upconversion imaging. A two-channel model is set up for analyzing charac- teristics of the phase errors, and an active optical control technique based on stochastic parallel gradient decent algorithm (SPGD controller) is proposed to calibrate the phase errors. To demonstrate the feasi- bility of the SPGD controller, simulations are performed and an experimental system with a two-channel fiber array is set up. Simulation and experiment results show that the SPGD controller can effectively and rapidly compensate the phase errors of the optical carrier, and the accuracy of the phase control is sufficient for imagine svstems.  相似文献   

4.
Orthogonal eigenstructure control (OEC) is a novel feedback control that is applicable to linear systems. Orthogonal eigenstructure control can minimizes the trial and error by the controller designer. It finds orthogonal vectors to some targeted modes of the structure within the achievable eigenvector set. When the targeted modes are replaced with the orthogonal vectors, it results in a decoupled system or structure that leads to vibration isolation. In this article, experimental application of this control method for active vibration cancellation of a plate is presented. Piezoelectric actuators are used as control actuators and accelerometers are used as feedback sensors. Vibration cancellation in a plate due to 150 Hz sinusoidal disturbance and a wideband disturbance within the range 200-300 Hz are experimentally studied. Since OEC is a model-based control method, system identification techniques are used for estimating the state-space realization of the system model. The effect of tuning the control gain is studied to compensate for the inaccurate system identification or factors that cannot be identified easily but play a major role in vibration of a structure. A finite element model of a plate is considered and the effects of scaling the control gains are investigated. It is shown that there is an allowable region for tuning the control gain without loosing the stability. The result of this analysis is used in the experiment for adjusting the control gains.  相似文献   

5.
OPTIMAL CONTROL METHOD WITH TIME DELAY IN CONTROL   总被引:2,自引:0,他引:2  
Optimal control method for active vibration control of linear time-delay systems is investigated in this paper. In terms of two cases that time delay is integer and non-integer times of sampling period, motion equation with time delay is transformed as standard discrete forms which contain no time delay by using zero order holder respectively. Discrete quadratic function is used as objective function in design of controller to guarantee good control efficiency on sampling points. In every step of computation of the deduced controller, it contains not only current step of state feedback but also linear combination of some former steps of control. Because the controller is deduced directly from time-delay differential equation, system stability can be guaranteed easily, thus this method is generally applicable to ordinary control systems. The performance of the control method proposed and system stability when using this method are all demonstrated by numerical simulation results. Simulation results demonstrate that the presented method is a viable and attractive control strategy for applications to active vibration control. Instability in responses occurs possibly if the systems with time delay are controlled using controller designed in case of no time delay.  相似文献   

6.
Turbulent atmosphere, gusts, and manoeuvres significantly excite aircraft rigid body motions and structural vibrations, which leads to reduced ride comfort and increased structural loads. In particular BWB (Blended Wing Body) aircraft configurations, while promising a significant fuel efficiency improvement compared to wing-tube configurations, exhibit severe sensitivity to gusts. In general, a flexible aircraft represents a lightly damped structure involving a large variety of uncertainties due to fuel mass variations during flight, control system nonlinearities, aerodynamic nonlinearities, and structural nonlinearities, to name just a few. Especially at the beginning of flight testing of a newly developed aircraft type, plant models generally require a lot of verification and adjustment based on obtained flight test data, before they can be used reliably for control law design. Adaptive control already is a well-established method for many active noise and vibration control problems, and thus is proposed here for application to the problem of gust load alleviation. However, safety requirements are significantly higher for gust load alleviation systems than for most noise and vibration control systems. This paper proposes a MIMO (Multi-Input Multi-Output) adaptive feed-forward controller for the alleviation of turbulence-induced rigid body motions and structural vibrations on aircraft. The major contribution to the research field of active noise and vibration control is the presentation of a detailed stability analysis of the MIMO adaptive algorithm in order to support potential certification of this method for a safety-critical application. Finally, the proposed MIMO adaptive feed-forward vibration controller is applied to a longitudinal flight dynamics model of a large flexible BWB airliner in order to verify the derived vibration controller on a challenging control problem.  相似文献   

7.
Some efficient strategies for the active control of vibrations of a beam structure using piezoelectric materials are described. The control algorithms have been implemented for a cantilever beam model developed using finite element formulation. The vibration response of the beam to an impulse excitation has been calculated numerically for the uncontrolled and the controlled cases. The essence of the method proposed is that a feedback force in different modes be applied according to the vibration amplitude in the respective modes i.e., modes having lesser vibration may receive lesser feedback. This weighting may be done on the basis of either displacement or energy present in different modes. This method is compared with existing methods of modal space control, namely the independent modal space control (IMSC), and modified independent modal space control (MIMSC). The method is in fact an extension of the modified independent space control with the addition that it proposes to use the sum of weighted multiple modal forces for control. The proposed method results in a simpler feedback, which is easy to implement on a controller. The procedure is illustrated for vibration control of a cantilever beam. The analytical results show that the maximum feedback control voltage required in the proposed method is further reduced as compared to existing methods of IMSC and MIMSC for similar vibration control. The limitations of the proposed method are discussed.  相似文献   

8.
刘恒  李生刚  孙业国  王宏兴 《物理学报》2015,64(7):70503-070503
针对带有非对称控制增益的不确定分数阶混沌系统的同步问题设计了模糊自适应控制器. 模糊逻辑系统用来逼近未知的非线性函数, 非对称的控制增益矩阵被分解为一个未知的正定矩阵、一个对角线上元素为+1或-1的已知对角矩阵和 一个未知的上三角矩阵的乘积. 基于分数阶Lyapunov稳定性理论构造了模糊控制器以及分数阶的参数自适应律, 在保证所有变量有界的情况下实现驱动系统和响应系统的同步. 在分数阶系统稳定性分析中给出了一种平方Lyapunov函数的使用方法, 根据此方法很多针对整数阶系统的控制方法可以推广到分数阶系统中. 最后数值仿真结果验证了所提控制方法的可行性.  相似文献   

9.
Feedforward controllers are used in many active noise control (ANC) systems to generate destructive interference in noise fields. An ideal feedforward ANC controller should have an infinite impulse response (IIR) transfer function, but most available feedforward ANC controllers have finite impulse responses (FIR) instead. The main reason is related to the adaptation algorithms of ANC systems. In general, adaptive FIR filters converge faster with guaranteed stability. In this study, the adaptive Laguerre filter is proposed and tested in an ANC application with positive experimental effects. The new ANC controller is an IIR filter, but its adaptation is similar to that of a FIR filter with fast convergence and guaranteed stability. Detailed explanations and analysis are presented in the main text.  相似文献   

10.
《中国物理 B》2021,30(9):90507-090507
The idea of network splitting according to time delay and weight is introduced. Based on the cyber physical systems(CPS), a class of multi-weighted complex transportation networks with multiple delays is modeled. The finite-time synchronization of the proposed complex transportation networks model is studied systematically. On the basis of the theory of stability, the technique of adaptive control, aperiodically intermittent control and finite-time control, the aperiodically intermittent adaptive finite-time synchronization controller is designed. The controller designed in this paper is beneficial for understanding the synchronization in multi-weighted complex transportation networks with multiple delays. In addition,the conditions for the existence of finite time synchronization have been discussed in detail. And the specific value of the settling finite time for synchronization is obtained. Moreover, the outer coupling configuration matrices are not required to be irreducible or symmetric. Finally, simulation results of the finite-time synchronization problem are given to illustrate the correctness of the results obtained.  相似文献   

11.
This paper presents an approach to the control system design of seat suspension systems for the active vibration attenuation. The paper presents the studies of the active vibration control strategy based on the reverse dynamics of force actuator and the primary controller. The multi-criteria optimization procedure is utilized in order to calculate the primary controller settings which subsequently define the vibro-isolation characteristics of active suspensions. As an example of the proposed control system design, the seat with a pneumatic suspension is investigated and its vibro-isolation properties are shaped by an appropriate selection of the controller settings.  相似文献   

12.
A design methodology for wave-absorbing active material system is reported. The design enforces equivalence between an assumed material model having wave-absorbing behavior and a set of target feedback controllers for an array of microelectro-mechanical transducers which are integral part of the active material system. The proposed methodology is applicable to problems involving the control of acoustic waves in passive-active material system with complex constitutive behavior at different length-scales. A stress relaxation type one-dimensional constitutive model involving viscous damping mechanism is considered, which shows asymmetric wave dispersion characteristics about the half-line. The acoustic power flow and asymptotic stability of such material system are studied. A single sensor non-collocated linear feedback control system in a one-dimensional finite waveguide, which is a representative volume element in an active material system, is considered. Equivalence between the exact dynamic equilibrium of these two systems is imposed. It results in the solution space of the design variables, namely the equivalent damping coefficient, the wavelength(s) to be controlled and the location of the sensor. The characteristics of the controller transfer functions and their pole-placement problem are studied.  相似文献   

13.
A robust active noise controller (ANC) is proposed here for finite ducts. While the H(infinity) control theory provides theoretical ground and numerical algorithms to design robust controllers, it is important for an engineer to design and formulate a robust controller so that the objective is more achievable and the H(infinity) constraints less restrictive without sacrificing robustness. A new robust ANC is designed this way with an extra actuator to improve achievable performance and introduce more degrees of freedom to controller parameters. The new strategy relaxes H(infinity) constraints without sacrificing robustness and enables the ANC to tolerate a wide variety of errors and uncertainties including truncation errors between a finite model and an infinite field. Theoretical analysis, numerical examples, and experimental results are presented to demonstrate the improved performance of the proposed ANC when subject to a certain level of uncertainties in a duct.  相似文献   

14.
Self-powered active vibration control using a single electric actuator   总被引:1,自引:0,他引:1  
The authors have proposed self-powered active vibration control systems that achieve active vibration control using regenerated vibration energy. Such systems do not require external energy to produce a control force. This paper presents a self-powered system in which a single actuator realizes active control and energy regeneration.The system proposed needs to regenerate more energy than it consumes. To discuss the feasibility of this system, the authors proposed a method to calculate the balance between regenerated and consumed energies, using the dynamical property of the system, the feedback gain of the active controller, the specifications of the actuator, and the power spectral density of disturbance. A trade-off was found between the performance of the active controller and the energy balance. The feedback gain of the active controller is designed to have good suppression performance under conditions where regenerated energy exceeds consumed energy.A practical system to achieve self-powered active vibration control is proposed. In the system, the actuator is connected to the condenser through relay switches, which decide the direction of the electric current, and a variable resistor, which controls the amount of the electric current. Performance of the self-powered active vibration was examined in experiments; the results showed that the proposed system can produce the desired control force with regenerated energy, and that it had a suppression performance similar to that of an active control system using external energy. It was found that self-powered active control is attainable under conditions obtained through energy balance analysis.  相似文献   

15.
A new method for partial eigenstructure assignment using acceleration and displacement feedback for undamped vibration systems is presented in this paper. Firstly, a necessary and sufficient condition is proposed for the incremental mass and stiffness matrices that modify some eigenpairs while keeping other eigenpairs unchanged. Secondly, based on this condition, an algorithm for determining the required control gain matrices of acceleration and displacement feedback, which assign the desired eigenstructure, is developed. This algorithm is easy to implement, and works directly on the second-order system model. More importantly, the algorithm allows the control matrix to be specified beforehand and also leads naturally to a small norm solution of the feedback gain matrices. Finally, some numerical examples are given to demonstrate the effectiveness and accuracy of the proposed algorithm.  相似文献   

16.
This work examines the characteristics of a unique active vibration isolator and develops a control strategy for it. The proposed active vibration isolator is introduced and its dynamic model is presented. A characterization study is conducted to identify system parameters. It is shown that with a simple proportional feedback the closed-loop system has a very narrow stability margin due to the inherent dynamics of the actuator. To improve the stability of the closed-loop system and enhance the performance of vibration isolation, a phase compensator is incorporated in the control scheme. An optimization problem is formulated to determine the optimum controller parameters by minimizing the 2nd norm of the displacement transmissibility. Both absolute position feedback and relative position feedback are considered. In real time implementation, an automatic on/off switching strategy is devised to take full advantage of both the active isolator and passive isolator. The experimental results show that with the proposed control scheme, the isolator is capable of suppressing base excitations effectively.  相似文献   

17.
Vibration caused by friction is harmful to engineering systems. Understanding the mechanism of such a physical phenomenon and developing some strategies to effectively control the vibration have both theoretical and practical significance. Based on our previous work, this paper deals with a problem of active compensation control of friction-induced self-excited vibration using adaptive fuzzy systems. Comparative studies on control performance are carried out, where a class of adaptive compensation control schemes with various friction models are applied to control a motion dynamics with friction. It is observed that our proposed modeling and control techniques are powerful to eliminate the limit cycle and the steady-state error. Furthermore, robustness of the proposed controller with respect to external disturbances is discussed. Simulation results show that the active controller with adaptive fuzzy friction compensation outperforms other active controllers with compensation terms characterized by three well-known friction models.  相似文献   

18.
Synchronous vibration can be caused by rotor imbalance in high-speed rotors of momentum exchange devices, and the imbalance vibration is the main disturbance for attitude control of spacecrafts. Active magnetic bearing (AMB) is widely used in momentum exchange devices due to its active vibration control ability. To suppress the imbalance vibration completely, an adaptive control approach based on the AMB is proposed. First, dynamics of the AMB rotor with both static imbalance and dynamic imbalance are introduced, and the model of power amplifier is particularly analyzed. Large temperature change range and overpowering cosmic ray will induce considerable errors and variations in parameters of the power amplifier, which has to work in space for about ten years. Therefore, adaptive compensation should be made for these errors and variations. Conditions, on which the imbalance vibration can be completely suppressed, are analyzed, and the results show that these conditions can be satisfied with notch filters and feedforward compensations (FFCs). However, the FFC contains an inverse function of the power amplifier, whose errors and variations can result in gain and phase differences and changes between the output voltage of the controller and the actual output current of the power amplifier. Consequently, the FFC becomes inaccurate, and residual vibration occurs. Finally, a gain phase modifier (GPM) is proposed to form two closed loops to tune the gain and phase of the FFC adaptively and precisely. The effectiveness of the proposed approach has been demonstrated by simulations and experiments. Compared with the existing methods, this method can achieve adaptive complete suppression of the imbalance vibration unaffected by the errors and variations of the power amplifier.  相似文献   

19.
The gyro is one of the most interesting and everlasting nonlinear dynamical systems,which displays very rich and complex dynamics,such as sub-harmonic and chaotic behaviors.We study the chaos suppression of the chaotic gyros in a given finite time.Considering the effects of model uncertainties,external disturbances,and fully unknown parameters,we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible.Using the finite-time control technique,we give the exact value of the chaos suppression time.A mathematical theorem is presented to prove the finite-time stability of the proposed scheme.The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.  相似文献   

20.
In this paper, active control of periodic vibration is implemented using maglev actuators which exhibit inherent nonlinear behaviors. A multi-channel feedforward control algorithm is proposed to solve these nonlinear problems, in which maglev actuators are treated as single-input–single-output systems with unknown time-varying nonlinearities. A radial basis function network is used by the algorithm as its controller, whose parameters are adapted only with the model of the linear system in the secondary path. Compared with the strategies in the conventional magnetic-levitation system control as well as nonlinear active noise/vibration control, the proposed algorithm has the advantage that the nonlinear modeling procedure of maglev actuators and the usage of displacement sensors could be both avoided. Numerical simulations and real-time experiments are carried out based on a multiple-degree-of-freedom vibration isolation system. The results show that the proposed algorithm not only could efficiently compensate for the actuators’ time-varying nonlinearities, but also has the ability to greatly attenuate the energy of periodic vibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号