首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, applying the method of reciprocal theorem, we give the distributions of the amplitude of bending moments along clamped edges and the amplitude of deflections along free edges of rectangular plates with two adjacent clamped edges under harmonic distributed and concentrated loads.  相似文献   

2.
The local instability of plates with annular inclusions is studied within the framework of exact three–dimensional equations. A numerical experiment is performed for the case where two rings are pressed in a plate made of the same material as the rings. The effect of the physicomechanical parameters of a medium on the critical contact pressures is studied.  相似文献   

3.
The integro-partial differential equations governing the dynamic behavior of viscoelastic plates taking account of higher-order shear effects and finite deformations are presented. From the matrix formulas of differential quadrature, the special matrix product and the domain decoupled technique presented in this work, the nonlinear governing equations are converted into an explicit matrix form in the spatial domain. The dynamic behaviors of viscoelastic plates are numerically analyzed by introducing new variables in the time domain. The methods in nonlinear dynamics are synthetically applied to reveal plenty and complex dynamical phenomena of viscoelastic plates. The numerical convergence and comparison studies are carried out to validate the present solutions. At the same time, the influences of load and material parameters on dynamic behaviors are investigated. One can see that the system will enter into the chaotic state with a paroxysm form or quasi-periodic bifurcation with changing of parameters.  相似文献   

4.
The tensile stress–stretch behavior of an ethylene–propylene–diene terpolymer (EPDM) was experimentally investigated, both in a quasi-static stretching rate range (<0.4/s) with a conventional material test machine and in a dynamic stretching rate range (2800/s–3200/s) with a split Hopkinson tension bar (SHTB) technique. Experimental data were then analyzed using the Ogden and Roxburgh’s idealized Mullins effect modeling theory. Results show that the stress–stretch behavior is significantly dependent on stretching rate and the Mullins effect exists under dynamic loading. Furthermore, stretching rate only affects the material properties. The degree of damage in a stretched specimen is a function of only the maximum stretch ratio the specimen experienced.  相似文献   

5.
6.
7.
The elastic behavior of an edge dislocation located inside the core of a core–shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. An important parameter so-called interface characteristic parameter which has the dimension of length and is a combination of the interface moduli enters the formulations. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. The introduced characteristic parameter allows the examination of the core–shell size on the image forces acting on the dislocation. The repelling and attracting effects of the interface parameter on the image force are discussed. The equilibrium position of the dislocation is also studied. The dislocation strain energy in the interface elasticity framework is only slightly different from that of traditional elasticity when the dislocation is placed in the central region of the core and reaches its maximum value when it is located near the core–shell interface.  相似文献   

8.
The effect of thermal gradient on the free vibration of clamped visco-elastic rectangular plate with linearly thickness variations in both the directions has been studied here. The governing differential equation has been solved using Rayleigh-Ritz technique. The frequency equation is derived for the clamped boundary condition on all the four edges. The effect of linear temperature variation has been considered. Deflection and time period corresponding to the first two modes of vibrations of a clamped plate have been computed for various values of aspect ratio, thermal constants, and taper constants.  相似文献   

9.
The concept of combining metallic honeycomb with folded thin metallic sheets(corrugation) to construct a novel core type for lightweight sandwich structures is proposed. The honeycomb–corrugation hybrid core is manufactured by filling the interstices of aluminum corrugations with precision-cut trapezoidal aluminum honeycomb blocks, bonded together using epoxy glue. The performance of such hybrid-cored sandwich panels subjected to out-of-plane compression, transverse shear, and three-point bending is investigated, both experimentally and numerically. The strength and energy absorption of the sandwich are dramatically enhanced, compared to those of a sandwich with either empty corrugation or honeycomb core. The enhancement is induced by the beneficial interaction effects of honeycomb blocks and folded panels on improved buckling resistance as well as altered crushing modes at large plastic deformation.The present approach provides an effective method to further improve the mechanical properties of conventional honeycomb-cored sandwich constructions with low relative densities.  相似文献   

10.
11.
A number of techniques exist for minimizing the computational cost of discrete element simulations (DEMs). One such method is a reduction of particle stiffness, which allows for bigger time steps and therefore fewer iterations in a simulation. However, the limits and drawbacks of this approach are still unclear, and may lead to invalid results. This paper investigates the effect of a stiffness reduction on bulk behavior by examining three case studies. Two cases demonstrate that particle stiffness can be reduced without affecting the bulk material behavior, whereas the third test shows that a stiffness reduction influences the bulk behavior.  相似文献   

12.
In this paper, a fractional 3-dimensional (3-D) 4-wing quadratic autonomous system (Qi system) is analyzed. Time domain approximation method (Grunwald–Letnikov method) and frequency domain approximation method are used together to analyze the behavior of this fractional order chaotic system. It is found that the decreasing of the system order has great effect on the dynamics of this nonlinear system. The fractional Qi system can exhibit chaos when the total order less than 3, although the regular one always shows periodic orbits in the same range of parameters. In some fractional order, the 4 wings are decayed to a scroll using the frequency domain approximation method which is different from the result using time domain approximation method. A surprising finding is that the phase diagrams display a character of local self-similar in the 4-wing attractors of this fractional Qi system using the frequency approximation method even though the number and the characteristics of equilibria are not changed. The frequency spectrums show that there is some shrinking tendency of the bandwidth with the falling of the system states order. However, the change of fractional order has little effect on the bandwidth of frequency spectrum using the time domain approximation method. According to the bifurcation analysis, the fractional order Qi system attractors start from sink, then period bifurcation to some simple periodic orbits, and chaotic attractors, finally escape from chaotic attractor to periodic orbits with the increasing of fractional order α in the interval [0.8,1]. The simulation results revealed that the time domain approximation method is more accurate and reliable than the frequency domain approximation method.  相似文献   

13.
The quasi-Green’s function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green’s function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of the problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green’s formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.  相似文献   

14.
Based on the elasto-plastic theory, considering the effect of spherical stress tensor on the elasto-plastic deformation and using the slicing treatment to deal with the plasticity of functionally graded coatings, the elasto-plastic increment constitutive equations of the sandwich plates with functionally graded metal-metal face sheets can be derived. Applying the weak bonded theory to the interfacial constitutive relation and taking into account the geometric nonlinearity, the nonlinear increment differential equilibrium equations of the sandwich plates with functionally graded metal-metal face sheets are obtained by the minimum potential energy principle. The finite difference method and the iterative method are used to obtain the post-buckling path. When the effect of geometrical nonlinearity of the plate is ignored, the elasto-plastic critical buckling load of the sandwich plates with functionally graded metal-metal face sheets can be solved by the Galerkin method and the iterative method. In the numerical examples, the effects of the interface damages, the induced load ratio, the functionally graded index, and the geometry parameters on the elasto-plastic post-buckling path and the elasto-plastic critical buckling load are investigated.  相似文献   

15.
Chai  Yuyang  Li  Fengming  Song  Zhiguang 《Meccanica》2019,54(7):919-944
Meccanica - This paper is devoted to investigate the nonlinear dynamic characteristics of lattice sandwich composite panels resting on Winkler–Pasternak elastic foundations under simultaneous...  相似文献   

16.
A generalized work–energy method for the linear and geometrically nonlinear static analysis of thin isotropic plate with a cutout is presented. The plate geometry is divided into few quadrilateral segments. Each segment is defined by four curved edges and the natural coordinates in conjunction with the Cartesian coordinates are used in formulating the stiffness matrix and the load vector. Two different sets of interpolating functions are used for the geometric and displacement representations respectively. The matrix equation of equilibrium is derived from the variational principle. By exploiting the geometric symmetry, numerical results are obtained for the following examples: (a) square plate with circular opening at the centre and (b) circular plate with circular or square inner boundary. The plates are subjected to uniformly distributed load and both the pinned and fixed outside boundary conditions are considered. Very good comparison is observed between the present results and those published in the literature for the fixed square plate without an opening. Effects of the opening size on the displacement are examined in detail.  相似文献   

17.
We study the problem of an elastic shell-like inclusion with high rigidity in a three-dimensional domain by means of the asymptotic expansion method. The analysis is carried out in a general framework of curvilinear coordinates. After defining a small real adimensional parameter ε, we characterize the limit problems when the rigidity of the inclusion has order of magnitude \frac1e\frac{1}{\varepsilon } and \frac1e3\frac{1}{\varepsilon^{3}} with respect to the rigidities of the surrounding bodies. Moreover, we prove the strong convergence of the solution of the initial three-dimensional problem towards the solution of the simplified limit problem.  相似文献   

18.
The elastica behavior of an extensional sandwich panel with a “soft” core when subjected to in-plane compressive loads is presented and it is compared with the response of its extensional equivalent single layer (ESL) with shear deformations model. The field equations along with the appropriate boundary conditions for the sandwich and the ESL panels have been derived through a variational approach following the High-order SAndwich Panel Theory (HSAPT) approach that takes into account the vertical flexibility of the core. The governing equations include the effects of the extension of the mid-surfaces of the face sheets of the sandwich panel or the mid-plane of the ESL model which the classical elastica approach misses. The results of the elastica response of a clamped-simply-supported sandwich panel and its ESL counterpart are presented and compared. They include the response along the panel, deformed shapes and equilibrium curves of in-plane loads versus structural quantities such as displacements and internal stress resultants and stresses. These results reveal that the predicted buckling load of the ESL panel is larger than that of the sandwich panel and that deep in the non-linear range the upper face sheet wrinkles with increasing overall and edge displacements and a release of the load. Hence, the use of an equivalent single layer panel especially when a sandwich panel with a compliant core is considered may lead to unsafe and unreliable predictions when large displacements and large rotations are considered.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号