首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The continual approximation of the ground state of the discrete Frenkel–Kontorova model is tested using a symmetric algorithm of numerical simulation. A “kaleidoscope effect” is found, which means that the curves representing the dependences of the relative extension of an N-atom chain vary periodically with increasing N. Stairs of structural transitions for N ? 1 are analyzed by the channel selection method with the approximation N = ∞. Images of commensurable and incommensurable structures are constructed. The commensurable–incommensurable phase transitions are stepwise.  相似文献   

2.
王苍龙  段文山  陈建敏  石玉仁 《中国物理 B》2011,20(1):14601-014601
The dynamics of a certain density of interacting atoms arranged on a two-dimensional square lattice, which is made to slide over a two-dimensional periodic substrate potential with also the quare lattice symmetry, in the presence of dissipation, by an externally applied driving force, is studied. By rotating the misfit angle θ, the dynamical behaviour displays two different tribological regimes: one is smooth, the other becomes intermittent. We comment both on the nature of the atomic dynamics in the locked-to-sliding transition, and on the dynamical states displayed during the atom motion at different values of the driving force. In tribological applications, we also investigate how the main model parameters such as the stiffness strength and the magnitude of the adhesive force affect the static friction of the system. In particular, our simulation indicates that the superlubricity will appear.  相似文献   

3.
The role of interface couplings on the energy transport of two coupled Frenkel–Kontorova (FK) chains is explored through numerical simulations. In general, it is expected that the interface couplings result in the suppression of heat conduction through the coupled system due to the additional interface phonon–phonon scattering. In the present paper, it is found that the thermal conductivity increases with increasing intensity of interface interactions for weak inter-chain couplings, whereas the heat conduction is suppressed by the interface interaction in the case of strong inter-chain couplings. Based on the phonon spectral energy density method, we demonstrate that the enhancement of energy transport results from the excited phonon modes (in addition to the intrinsic phonon modes), while the strong interface phonon–phonon scattering results in the suppressed energy transport.  相似文献   

4.
《中国物理 B》2021,30(5):50503-050503
It is shown that we can control spatiotemporal chaos in the Frenkel–Kontorova(FK) model by a model-free control method based on reinforcement learning. The method uses Q-learning to find optimal control strategies based on the reward feedback from the environment that maximizes its performance. The optimal control strategies are recorded in a Q-table and then employed to implement controllers. The advantage of the method is that it does not require an explicit knowledge of the system, target states, and unstable periodic orbits. All that we need is the parameters that we are trying to control and an unknown simulation model that represents the interactive environment. To control the FK model, we employ the perturbation policy on two different kinds of parameters, i.e., the pendulum lengths and the phase angles. We show that both of the two perturbation techniques, i.e., changing the lengths and changing their phase angles, can suppress chaos in the system and make it create the periodic patterns. The form of patterns depends on the initial values of the angular displacements and velocities. In particular, we show that the pinning control strategy, which only changes a small number of lengths or phase angles, can be put into effect.  相似文献   

5.
6.
7.
8.
9.
Yi-Wei Li 《中国物理 B》2022,31(5):50501-050501
The nano-friction phenomenon in a one-dimensional Frenkel-Kontorova (FK) model under Gaussian colored noise is investigated by using the molecular dynamic simulation method. The role of colored noise is analyzed through the inclusion of a stochastic force via a Langevin molecular dynamics method. Via the stochastic Runge-Kutta algorithm, the relationship between different parameter values of the Gaussian colored noise (the noise intensity and the correlation time) and the nano-friction phenomena such as hysteresis, the maximum static friction force is separately studied here. Similar results are obtained from the two geometrically opposed ideal cases: incommensurate and commensurate interfaces. It was found that the noise strongly influences the hysteresis and maximum static friction force and with an appropriate external driving force, the introduction of noise can accelerate the motion of the system, making the atoms escape from the substrate potential well more easily. Interestingly, suitable correlation time and noise intensity give rise to super-lubricity. It is noteworthy that the difference between the two circumstances lies in the fact that the effect of the noise is much stronger on triggering the motion of the FK model for the commensurate interface than that for the incommensurate interface.  相似文献   

10.
The motion of Frenkel–Kontorova dislocations in the single crystals of aluminum at low temperatures has been studied, by means of the computer simulation. It is shown that the dislocation movement is realized by the quantum tunneling of the kinks of dislocations through the Peierls barriers. It is shown that the action of the Peierls high barrier is analogous to the action of low temperatures, and if the Peierls barrier overcome, the dislocation moves unevenly, accelerating under the action of the Peierls barrier and slowing down after overcoming the Peierls barrier. Based on the numerical experiment, the mean free path of dislocation, the distance between the Peierls potential barriers and the width of the Peierls barrier are calculated. The computed values correspond to the real values.  相似文献   

11.
We investigate theoretically the effects of Rashba spin–orbit coupling on the spin dependent transport through diluted magnetic semiconductor single and double barrier structures in the presence of a magnetic field. We find that the Rashba spin–orbit coupling gives rise to an enhancement of the negative tunnelling magnetoresistance of the diluted magnetic semiconductor single barrier structure and a pronounced beating pattern in the tunnelling magnetoresistance and spin polarization of the diluted magnetic semiconductor double barrier structure.  相似文献   

12.
Motivated by the sigma model limit of multicomponent Ginzburg–Landau theory, a version of the Faddeev–Skyrme model is considered in which the scalar field is coupled dynamically to a one-form field called the supercurrent. This coupled model is investigated in the general setting where physical space MM is an oriented Riemannian manifold and the target space NN is a Kähler manifold, and its properties are compared with the usual, uncoupled Faddeev–Skyrme model. In the case N=S2N=S2, it is shown that supercurrent coupling destroys the familiar topological lower energy bound of Vakulenko and Kapitanski when M=R3M=R3, and the less familiar linear bound when MM is a compact 3-manifold. Nonetheless, local energy minimizers may still exist. The first variation formula is derived and used to construct three families of static solutions of the model, all on compact domains. In particular, a coupled version of the unit charge hopfion on a three-sphere of arbitrary radius is found. The second variation formula is derived, and used to analyze the stability of some of these solutions. In particular, it is shown that, in contrast to the uncoupled model, the coupled unit hopfion on the three-sphere of radius RR is unstable   for all RR. This gives an explicit, exact example of supercurrent coupling destabilizing a stable solution of the usual Faddeev–Skyrme model, and casts doubt on the conjecture of Babaev, Faddeev and Niemi that knot solitons should exist in the low energy regime of two-component superconductors.  相似文献   

13.
14.
We have studied spin-dependent electron tunneling through the Rashba barrier in a monolayer graphene lattices. The transfer matrix method, have been employed to obtain the spin dependent transport properties of the chiral particles. It is shown that graphene sheets in the presence of Rashba spin–orbit barrier will act as an electron spin-inverter.  相似文献   

15.
We have studied the existence of topological self-dual configurations in a nonminimal CPT-odd and Lorentz-violating (LV) Maxwell–Higgs model, where the LV interaction is introduced by modifying the minimal covariant derivative. The Bogomol’nyi–Prasad–Sommerfield formalism has been implemented, revealing that the scalar self-interaction implying self-dual equations contains a derivative coupling. The CPT-odd self-dual equations describe electrically neutral configurations with finite total energy proportional to the total magnetic flux, which differ from the charged solutions of other CPT-odd and LV models previously studied. In particular, we have investigated the axially symmetrical self-dual vortex solutions altered by the LV parameter. For large distances, the profiles possess general behavior similar to the vortices of Abrikosov–Nielsen–Olesen. However, within the vortex core, the profiles of the magnetic field and energy can differ substantially from ones of the Maxwell–Higgs model depending if the LV parameter is negative or positive.  相似文献   

16.
We theoretically investigate the periodically modulated interaction effect on the propagation properties of a traveling plane wave in a Bose–Einstein condensate(BEC) trapped in a deep annular lattice with local defects both analytically and numerically. By using the two-mode ansatz and the tight-binding approximation, a critical condition for the system preserving the superfluidity is obtained analytically and confirmed numerically. We find that the coupled effects of periodic modulated atomic interactions, the quasi-momentum of the plane wave, and the defect can control the superfluidity of the system. Particularly, when we consider the periodic modulation in the system with single defect, the critical condition for the system entering the superfluid regime depends on both the defect and the momentum of the plane wave. This is different from the case for the system without the periodic modulation, where the critical condition is only determined by the defect. The modulation and quasi-momentum of the plane wave can enhance the system entering the superfluid regime. Interestingly, when the modulated amplitude/frequency, the defect strength, and the quasi-momentum of the plane wave satisfy a certain condition, the system will always be in the superfluid region. This engineering provides a possible means for studying the periodic modulation effect on propagation properties and the corresponding dynamics of BECs in disordered optical lattices.  相似文献   

17.
《Physics letters. A》2014,378(26-27):1888-1892
Using the transfer matrix method, we study the electron transport through a single-layer graphene superlattice with alternating layers of ferromagnetic and normal regions with Rashba spin–orbit coupling. We show that the transport properties of the system depend strongly on the superlattice parameters. As another result, Rashba spin–orbit coupling manifests to be of crucial importance in controlling the transmission probabilities and Giant Magneto Resistance (GMR).  相似文献   

18.
Polariton states have been investigated in a microcavity, where the energy of the Frenkel exciton in an organic quantum well and the energy of the semiconductor Wannier–Mott exciton in an inorganic quantum well are close to the microcavity optical mode. It has been shown that the interaction of each of these excitons with the microcavity optical mode leads to their interaction with each other and to the formation of mutually coupled hybrid excitations. The influence of the location of the quantum wells in a microcavity on the spectra of hybrid states with different polarizations has been analyzed.  相似文献   

19.
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.  相似文献   

20.
The scattering of a fermion in the background of a sign potential is considered with a general mixing of vector and scalar Lorentz structures with the scalar coupling stronger than or equal to the vector coupling under the Sturm–Liouville perspective. When the vector coupling and the scalar coupling have different magnitudes, an isolated solution shows that the fermion under a strong potential can be trapped in a highly localized region without manifestation of Klein’s paradox. It is also shown that the lonely bound-state solution disappears asymptotically as one approaches the conditions for the realization of spin and pseudospin symmetries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号