首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical cells with two ion-selective electrodes against a single-junction reference electrode were used to obtain the activity coefficients of glycine in aqueous electrolyte solutions. Activity coefficient data were presented for {H2O  +  KCl (mS)  +  glycine (mA)}, and {H2O  +  NaCl (mS)  +  glycine (mA)} atT =  298.15 K and T =  308.15 K, respectively. The results show that the presence of an electrolyte and the nature of its cation have a significant effect on the activity coefficient of glycine in aqueous electrolyte solutions and, in turn, on the method of separation from its culture media. The results of the mean ionic activity coefficients of KCl were compared with those values reported in the literature, which were obtained by the isopiestic method. It was found that the method applied in this study provides accurate activity coefficient data. The effect of temperature on the mean ionic activity coefficient of NaCl in presence of glycine was also investigated.  相似文献   

2.
This paper describes a chemical model that calculates (solid + liquid) equilibria in the {m1FeCl2 + m2FeCl3}(aq), {m1FeSO4 + m2Fe2(SO4)3}(aq), {m1NaCl + m2FeCl3}(aq), {m1Na2SO4 + m2FeSO4}(aq), {m1NaCl + m2FeCl2}(aq), {m1KCl + m2FeCl3}(aq), {m1K2SO4 + m2Fe2(SO4)3}(aq), {m1KCl + m2FeCl2}(aq), {m1K2SO4 + m2FeSO4}(aq), and {m1MgCl2 + m2FeCl2}(aq) systems, where m denotes molality at T=298.15 K. The Pitzer ion-interaction model has been used for thermodynamic analysis of the experimental activity data in binary FeCl2(aq) and FeCl3(aq) solutions, and ternary solubility data, presented in the literature. The thermodynamic functions needed (binary and ternary parameters of ionic interaction, thermodynamic solubility products) have been calculated and the theoretical solubility isotherms have been plotted. The mixed solution model parameters {θ(MN) and ψ(MNX)} have been chosen on the basis of the compositions of saturated ternary solutions and data on the pure water solubility of the K2SO4 · FeSO4 · 6H2O double salt. The standard chemical potentials of four ferrous {FeCl2 · 4H2O, Na2SO4 · FeSO4 · 4H2O, K2SO4 · FeSO4 · 6H2O, and MgCl2 · FeCl2 · 8H2O} and three ferric {FeCl3 · 6H2O, 2KCl · FeCl3 · H2O, and 2K2SO4 · Fe2(SO4)3 · 14H2O} solid phases have been determined. Comparison of solubility predictions with experimental data not used in model parameterization is given. The component activities of the saturated {m1MgSO4 + m2FeSO4}(aq) and in the mixed crystalline phase were determined and the change of the molar Gibbs free energy of mixing ΔmixGm(s) of crystals was determined as a function of the solid phase composition. It is established that at T=298.15 K the mixed (Mg,Fe)SO4 · 7H2O and (Fe,Mg)SO4 · 7H2O crystals show small positive deviations from the ideal mixed crystals. Limitations of the {Fe(II) + Fe(III)} model due to data insufficiencies are discussed.  相似文献   

3.
The bromide minerals solubility in the mixed system (m1NaBr + m2MgBr2)(aq) have been investigated at T = 323.15 K by the physico-chemical analysis method. The equilibrium crystallization of NaBr·2H2O(cr), NaBr(cr), and MgBr2·6H2O(cr) has been established. The solubility-measurements results obtained have been combined with all other experimental equilibrium solubility data available in literature at T = (273.15 and 298.15) K to construct a chemical model that calculates (solid + liquid) equilibria in the mixed system (m1NaBr + m2MgBr2)(aq). The solubility modeling approach based on fundamental Pitzer specific interaction equations is employed. The model gives a very good agreement with bromide salts equilibrium solubility data. Temperature extrapolation of the mixed system model provides reasonable mineral solubility at high temperature (up to 100 °C). This model expands the previously published temperature variable sodium–potassium–bromide and potassium–magnesium–bromide models by evaluating sodium–magnesium mixing parameters. The resulting model for quaternary system (Na + K + Mg + Br + H2O) is validated by comparing solubility predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solution models due to data insufficiencies at high temperature are discussed.  相似文献   

4.
The thermodynamic properties ofZn5(OH)6(CO3)2 , hydrozincite, have been determined by performing solubility and d.s.c. measurements. The solubility constant in aqueous NaClO4media has been measured at temperatures ranging from 288.15 K to 338.15 K at constant ionic strength (I =  1.00 mol · kg  1). Additionally, the dependence of the solubility constant on the ionic strength has been investigated up to I =  3.00 mol · kg  1NaClO4at T =  298.15 K. The standard molar heat capacity Cp, mofunction fromT =  318.15 K to T =  418.15 K, as well as the heat of decomposition of hydrozincite, have been obtained from d.s.c. measurements. All experimental results have been simultaneously evaluated by means of the optimization routine of ChemSage yielding an internally consistent set of thermodynamic data (T =  298.15 K): solubility constant log * Kps 00 =  (9.0  ±  0.1), standard molar Gibbs energy of formationΔfGmo {Zn5(OH)6(CO3)2 }  =  (  3164.6  ±  3.0)kJ · mol  1, standard molar enthalpy of formation ΔfHmo{Zn5(OH)6(CO3)2 }  =  (  3584  ±  15)kJ · mol  1, standard molar entropy Smo{Zn5(OH)6(CO3)2 }  =  (436  ±  50)J · mol  1· K  1and Cp,mo / (J · mol  1· K  1)  =  (119  ±  11)  +  (0.834  ±  0.033)T / K. A three-dimensional predominance diagram is introduced which allows a comprehensive thermodynamic interpretation of phase relations in(Zn2 +  +  H2O  +  CO2) . The axes of this phase diagram correspond to the potential quantities: temperature, partial pressure of carbon dioxide and pH of the aqueous solution. Moreover, it is shown how the stoichiometric composition{n(CO3) / n(Zn)} of the solid compoundsZnCO3 and Zn5(OH)6(CO3)2can be checked by thermodynamically analysing the measured solubility data.  相似文献   

5.
This work reports the results of a thermodynamic investigation of the ternary mixed-electrolyte system (CsCl + CaCl2 + H2O). The activity coefficients of this mixed aqueous electrolyte system have been studied with the electromotive force measurement (EMF) of the cell: Cs ion-selective electrode (ISE)|CsCl(mA), CaCl2(mB), H2O|Ag/AgCl at T = 298.15 K and over total ionic strengths from (0.01 to 1.50) mol · kg?1 for different ionic strength fractions yB of CaCl2 with yB = (0, 0.2, 0.4, 0.6, and 0.8). The cesium ion-selective electrode (Cs-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a good Nernst response. The experimental results obey the Harned rule, and the Pitzer model can be used to describe this ternary system satisfactorily. The osmotic coefficients, excess Gibbs free energies and activities of water of the mixtures were also calculated.  相似文献   

6.
The solubility of the binary system (LiNO3 + H2O) from T = 273.15 K to T = 333.15 K and solubility isotherms of the ternary system (LiCl + LiNO3 + H2O) were elaborately measured at T = 273.15 K and T = 323.15 K. These solubility data, as well as water activities in the binary systems from the literature, were treated by an empirically modified BET model. The isotherms of the ternary system (LiCl + LiNO3 + H2O) were reproduced and a complete phase diagram of the ternary system in the temperature range from 273.15 K to 323.15 K predicted. It is shown that the solubility data for the binary system (LiNO3 + H2O) measured in this work are slightly different from the literature data. Simulated results showed that the saturated salt solution of (2.8LiCl + LiNO3) is in equilibrium with the stable solid phase LiNO3(s) over the temperature range from 283.15 K to 323.15 K, other than the solid phases LiNO3 · 3H2O(s) and LiClH2O(s) as reported by Iyoki et al. [S. Iwasaki, Y. Kuriyama. T. Uemura, J. Chem. Eng. Data 38 (1993) 396–398].  相似文献   

7.
The potential differences E of the cells Pt|H2|H2Ph(m1)  +  KHPh(m2)  +  KCl(m3) in Z|AgCl|Ag and Pt|H2|H2Ph(m1)  +  KHPh(m2)  +  KCl(m3) in Z|Hg2Cl2|Hg have been measured at T =  298.15 K in mixtures Z =  (W + S) of water (W) with cosolvents S =  propylene carbonate (PC) and S =  ethylene carbonate (EC), to determine the first ionization constants K of the o -phthalic acid H2Ph(benzene-1,2-dicarboxylic acid), which are indispensable for the determination of primary pH-metric standards based on the potassium hydrogen phthalate buffer (KHPh) in such solvent mixtures. The value of K is seen to decrease progressively with increasing mass fraction wsof the organic cosolvent, as with all of the other cosolvents studied earlier, but no simple relationship with the cosolvent permittivity is discernible. Since the required values of the standard potential difference Eoof the second cell were hitherto missing, they have now been obtained based on potential difference measurements of the cell Pt|H2|HCl(m) in Z|Hg2Cl2|Hg. The primary medium effect (EWo  EZo, by Owen’s definition) upon HCl in water-rich mixtures Z is seen to increase linearly with increasing ws, as in earlier investigations. In this comparative context, the slope of the primary medium effect against wsplots for the aprotic cosolvents increases regularly with decreasing permittivity, whereas for the protic (alcoholic) cosolvents the slope is ill-defined.  相似文献   

8.
Electrochemical cells with two ion-selective electrodes, a cation ion-selective electrode against an anion ion-selective electrode, were used to measure the activity coefficient of amino acids in aqueous electrolyte solutions. Activity coefficient data were measured for (H2O + NaBr + glycine) and (H2O + NaBr + l-valine) at T=298.15 K. The maximum concentrations of sodium bromide, glycine, and l-valine were (1.0, 2.4, and 0.4) mol · kg−1, respectively. The results show that the presence of an electrolyte and the nature of both the cation and the anion of the electrolyte have significant effects on the activity coefficients of amino acid in aqueous electrolyte solutions.  相似文献   

9.
The water activities of aqueous electrolyte mixture (NaCl + KCl + LiCl + H2O) were experimentally determined at T = 298.15 K by the hygrometric method at total ionic-strength from 0.4 mol · kg−1 to 6 mol · kg−1 for different ionic-strength fractions y of NaCl with y = 1/3, 1/2, and 2/3. The data allow the deduction of new osmotic coefficients. The results obtained were correlated by Pitzer’s model and Dinane’s mixing rules ECA I and ECA II for calculations of the water activity in mixed aqueous electrolytes. A new Dinane–Pitzer model is proposed for the calculation of osmotic coefficients in quaternary aqueous mixtures using the newly ternary and quaternary ionic mixing parameters of this studied system. The solute activity coefficients of component in the mixture are also determined for different ionic-strength fractions y of NaCl.  相似文献   

10.
The purpose of this work is modeling of the quaternary system of mixed NaCl + KCl electrolyte in mixed CH3OH + H2O solvent, with different alcohol mass fractions by using particularly, the Pitzer (P) and Pitzer–Esteso (PE) equations and based on potentiometric measurement technique. The experimental data are obtained by different molal salt ratio r (r = mNaCl/mKCl = 100, 150, 200 and 250) in mixed solvent with different alcohol mass fractions x (x = 0.10, 0.20, 0.30, 0.40, and 0.50) in water. A galvanic cell is employed for collecting the potentiometric data by combining a Na+ glass membrane and Ag/AgCl electrodes and using different series of electrolyte solutions, at defined constant ionic strengths, with the molality ranging from 0.0005 up to 3.5 mol · kg−1, at T = 298.15 ± 0.05 K of experiments. Comparison of the models shows that the modified Pitzer equation by Esteso (PE) present a better fit of the experimental data.  相似文献   

11.
Liquid–liquid equilibrium (LLE) data were determined for the quaternary systems of {(water + methanol or ethanol) + m-xylene + n-dodecane} at three temperatures 298.15, 303.15 and 313.15 K and atmospheric pressure. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of the solvent are calculated and compared. The phase diagrams for the quaternary systems including both the experimental and correlated tie lines are presented.  相似文献   

12.
(Liquid + liquid) equilibrium tie-lines were measured for one ternary system {x1H2O + x2(CH3)2CHOH + (1  x1  x2)CH3C(CH3)2OCH3} and one quaternary system {x1H2O + x2(CH3)2CHOH + x3CH3C(CH3)2OCH3 + (1  x1  x2  x3)(CH3)2CHOCH(CH3)2} at T = 298.15 K and P = 101.3 kPa. The experimental (liquid + liquid) equilibrium results were satisfactorily correlated by modified and extended UNIQUAC models both with ternary and quaternary parameters in addition to binary ones.  相似文献   

13.
An experimental study on metastable equilibria at T=288 K in the quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O was done by isothermal evaporation method. Metastable equilibrium solubilities and densities of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram under the condition saturated with Li2CO3 was plotted, in which there are four invariant points; nine univariant curves; six fields of crystallization: K2CO3 · 3/2H2O, K2B4O7 · 5H2O, Li2B2O4 · 16H2O, Na2B2O4 · 8H2O, Na2CO3 · 10H2O, NaKCO3 · 6H2O. Some differences were found between the stable phase diagram at T=298 K and the metastable one at T=288 K.  相似文献   

14.
《Fluid Phase Equilibria》2006,245(2):134-139
The vapor-hydrate equilibria were studied experimentally in detail for CH4 + C2H4 + tetrahydrofuran (THF) + water systems in the temperature range of 273.15–282.15 K, pressure range of 2.0–4.5 MPa, the initial gas–liquid volume ratio range of 45–170 standard volumes of gas per volume of liquid and THF concentration range of 4–12 mol%. The results demonstrated that, because of the presence of THF, ethylene was remarkably enriched in vapor phase instead of being enriched in hydrate phase for CH4 + C2H4 + water system. This conclusion is of industrial significance; it implies that it is feasible to enrich ethylene from gas mixture, e.g., various kinds of refinery gases or cracking gases in ethylene plant, by forming hydrate.  相似文献   

15.
A flow mixing calorimeter and a vibrating-tube densimeter have been used to measure excess molar enthalpies HmE and excess molar volumes VmE of {xC2H6 +  (1   x)SF6 }. Measurements over a range of mole fractions x have been made at T =  305.65 K and T =  312.15 K and at the pressures (3.76, 4.32, 4.88 and 6.0) MPa. The pressure 3.76 MPa is close to the critical pressure of SF6, the pressure 4.88 MPa is close to the critical pressure of C2H6, and the pressure 4.32 MPa is midway between these values. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6 }, {xCO2 +  (1   x)C2H4 } and {xCO2 +  (1   x)SF6 }.  相似文献   

16.
Solubility isotherms of the ternary system (LiCl + CaCl2 + H2O) were elaborately determined at T = (283.15 and 323.15) K. Several thermodynamic models were applied to represent the thermodynamic properties of this system. By comparing the predicted and experimental water activities in the ternary system, an empirical modified BET model was selected to represent the thermodynamic properties of this system. The solubility data determined in this work at T = (283.15 and 323.15) K, as well as those from the literature at other temperatures, were used for the model parameterization. A complete phase diagram of the ternary system was predicted over the temperature range from (273.15 to 323.15) K. Subsequently, the Gibbs free energy of formation of the solid phases CaCl2 · 4 H2O(s), CaCl2 · 2 H2O(s), LiCl · 2H2O(s), and LiCl · CaCl2 · 5H2O(s) was estimated and compared with the literature data.  相似文献   

17.
A flow mixing calorimeter followed by a vibrating-tube densimeter has been used to measure excess molar enthalpies HmE and excess molar volumesVmE of {xC3H8 +  (1   x)SF6}. Measurements over a range of mole fractionsx have been made at the pressure p =  4.30 MPa at eight temperatures in the rangeT =  314.56 K to 373.91 K, in the liquid region at p =  3.75 MPa andT =  314.56 K, in the two phase region at p =  3.91 MPa andT =  328.18 K, and in the supercritical region at p =  5.0 MPa andT =  373.95 K. The measurements are compared with results from the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on{xCO2 +  (1   x)C2H6} ,{xCO2 +  (1   x)C2H4} and{xCO2 +  (1   x)SF6} reported previously.  相似文献   

18.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

19.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

20.
(Liquid + liquid) equilibrium data for the quaternary systems (water + tert-butanol + 1-butanol + KBr) and (water + tert-butanol + 1-butanol + MgCl2) were experimentally determined at T = 293.15 K and T = 313.15 K. For mixtures with KBr, the overall salt concentrations were 5 and 10 mass percent; for mixtures with MgCl2, the overall salt concentrations were 2 and 5 mass percent. The experimental results were used to estimate molecular interaction parameters for the NRTL activity coefficient model, using the Simplex minimization method and a concentration-based objective function. The correlation results are extremely satisfactory, with deviations in phase compositions below 1.7%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号