首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
This paper investigates the form of the boundary conditions (BCs) used in macroscale models of PDEs with coefficients that vary over a small length-scale (microscale). Specifically, we focus on the one-dimensional multilayer diffusion problem, a simple prototype problem where an analytical solution is available. For a given microscale BC (e.g., Dirichlet, Neumann, Robin, etc.) we derive a corrected macroscale BC using the method of volume averaging. For example, our analysis confirms that a Robin BC should be applied on the macroscale if a Dirichlet BC is specified on the microscale. The macroscale field computed using the corrected BCs more accurately captures the averaged microscale field and leads to a reconstructed microscale field that is in excellent agreement with the true microscale field. While the analysis and results are presented for one-dimensional multilayer diffusion only, the methodology can be extended to and has implications on a broader class of problems.  相似文献   

2.
3.
In this paper, we present two higher-order compact finite difference schemes for solving one-dimensional (1D) heat conduction equations with Dirichlet and Neumann boundary conditions, respectively. In particular, we delicately adjust the location of the interior grid point that is next to the boundary so that the Dirichlet or Neumann boundary condition can be applied directly without discretization, and at the same time, the fifth or sixth-order compact finite difference approximations at the grid point can be obtained. On the other hand, an eighth-order compact finite difference approximation is employed for the spatial derivative at other interior grid points. Combined with the Crank–Nicholson finite difference method and Richardson extrapolation, the overall scheme can be unconditionally stable and provides much more accurate numerical solutions. Numerical errors and convergence rates of these two schemes are tested by two examples.  相似文献   

4.
Various phenomena occurring on the macrosscale result from physical and mechanical behaviour on the microscale [1]. For the mechanical modeling and simulation of the heterogeneous composition of fiber structured material, in addition to the material properties the contact between the fibers has to be taken into account. The material behaviour is strongly influenced by the material properties of the fiber, but also by the geometrical structure. Periodically arranged fibers like woven, knitted or plaited fabrics and randomly oriented ones like fleece can be distinguished in their arrangement. In consideration of different lengthscales the problem involves, it is necessary to introduce a multiscale approach based on the concept of a representative volume element (RVE). The macro-micro scale transition requires a method to impose the deformation gradient on the RVE by suited boundary conditions. The reversing scale transition, based on the HILL-MANDEL condition, requires the equality of the macroscopic average of the variation of work on the RVE and the local variation of the work on the macroscale [2]. For the micro-macro transition the averaged stresses have to be extracted by a homogenization scheme. From these results an effective material law can be derived. Beside the theoretical aspects, we present the stress-strain relation for RVE-models and different boundary conditions. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
In this paper we consider boundary value problems in perforated domains with periodic structures and cavities of different scales, with the Neumann condition on some of them and mixed boundary conditions on others. We take a case when cavities with mixed boundary conditions have so called critical size (see [1]) and cavities with the Neumann conditions have the scale of the cell. In the same way other cases can be studied, when we have the Neumann and the Dirichlet boundary conditions or the Dirichlet condition and the mixed boundary condition on the boundary of cavities.There is a large literature where homogenization problems in perforated domains were studied [2];-[7];  相似文献   

6.
We consider a waveguide modeled by the Laplacian in a straight planar strip. The Dirichlet boundary condition is taken on the upper boundary, while on the lower boundary we impose periodically alternating Dirichlet and Neumann condition assuming the period of alternation to be small. We study the case when the homogenization gives the Neumann condition instead of the alternating ones. We establish the uniform resolvent convergence and the estimates for the rate of convergence. It is shown that the rate of the convergence can be improved by employing a special boundary corrector. Other results are the uniform resolvent convergence for the operator on the cell of periodicity obtained by the Floquet–Bloch decomposition, the two terms asymptotics for the band functions, and the complete asymptotic expansion for the bottom of the spectrum with an exponentially small error term.  相似文献   

7.
We consider a waveguide modeled by the Laplacian in a straight planar strip with the Dirichlet condition on the upper boundary, while on the lower one we impose periodically alternating boundary conditions with a small period. We study the case when the homogenization leads us to the Neumann boundary condition on the lower boundary. We establish the uniform resolvent convergence and provide the estimates for the rate of convergence. We construct the two-terms asymptotics for the first band functions of the perturbed operator and also the complete two-parametric asymptotic expansion for the bottom of its spectrum.  相似文献   

8.
An L 2-estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space.  相似文献   

9.
A computational contact homogenization framework is developed for contact interfaces with dry granular third bodies. The micro-to-macro transition procedure that forms the basis of this framework consists of projecting the macroscale contact pressure and slip velocity to the observable test surface of a representative contact element. The solution of the local microscale problem reveals a macroscale friction coefficient where inelastic effects are taken into account in a finite deformation setting. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Min-protein oscillation in Escherichia coli has an essential role in controlling the accurate placement of the cell division septum at the middle-cell zone of the bacteria. This biochemical process has been successfully described by a set of reaction-diffusion equations at the macroscopic level. The lattice Boltzmann method (LBM) has been used to simulate Min-protein oscillation and proved to recover the correct macroscopic equations. In this present work, we studied the effects of LBM boundary conditions (BC) on Min-protein oscillation. The impact of diffusion and reaction dynamics on BCs was also investigated. It was found that the mirror-image BC is a suitable boundary treatment for this Min-protein model. The physical significance of the results is extensively discussed.  相似文献   

11.
12.
This paper is concerned with a family of second‐order elliptic systems in divergence form with rapidly oscillating periodic coefficients. We initiate the study of homogenization and boundary layers for Neumann problems with first‐order oscillating boundary data. We identify the homogenized system and establish the sharp rate of convergence in L2 in dimension three or higher. Regularity estimates are also obtained for the homogenized boundary data in both Dirichlet and Neumann problems. The results are used to establish a higher‐order convergence rate for Neumann problems with nonoscillating data. © 2018 Wiley Periodicals, Inc.  相似文献   

13.
İlker Temizer  Peter Wriggers 《PAMM》2008,8(1):10577-10578
For the computation of the macroscopic tangent that is required in multiscale volumetric homogenization techniques, two methods are summarized. First, a condensation approach is followed where the linearity of variational terms associated with the penalty enforcement of boundary conditions is explored in order to extract a macroscopic tangent at any stage of the Newton–Raphson iterations of a microstructural testing procedure. As an alternative approach, a second method is explored that requires only the knowledge of infinitesimally close macroscopic deformation states. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Manfred H. Ulz 《PAMM》2014,14(1):571-572
Hierarchical two-scale methods are computationally very powerful as there is no direct coupling between the macro- and microscale. Such schemes develop first a microscale model under macroscopic constraints, then the macroscopic constitutive laws are found by averaging over the microscale. The heterogeneous multiscale method (HMM) is a general top-down approach for the design of multiscale algorithms. While this method is mainly used for concurrent coupling schemes in the literature, the proposed methodology also applies to a hierarchical coupling. This contribution discusses a hierarchical two-scale setting based on the heterogeneous multi-scale method for quasi-static problems: the macroscale is treated by continuum mechanics and the finite element method and the microscale is treated by statistical mechanics and molecular dynamics. Our investigation focuses on an optimised coupling of solvers on the macro- and microscale which yields a significant decrease in computational time with no associated loss in accuracy. In particular, the number of time steps used for the molecular dynamics simulation is adjusted at each iteration of the macroscopic solver. A numerical example demonstrates the performance of the model. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Numerous materials show a softening behaviour at dynamic loading. The decrease of stress is caused by the evolution in the microscale in terms of areas where the local stiffness is reduced, e.g. due to micro-void growth. For a numerical treatment of this material behaviour, phenomenological damage approaches are used in daily engineering practice. For a better understanding of the micromechanical process of such phenomenological models, multiscale methods are becoming increasingly important. The physical quantities that are responsible for the microstructural evolution associated with the damage process are transferred into the numerical model. In this context, the method of configurational forces will be used to describe the geometrical changes of damaged areas. With the help of homogenization, macro- and microscale will be coupled. In consequence, each Gaussian point of the macroscale is modelled by an own microstructure (RVE), where the microscale evolves during the loading process according to observable damage phenomena. Hereby, we present the general case of hyperelastic materials at finite strains. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The aim of this contribution is the numerical determination of macroscopic material properties based on constitutive relationships characterising the microscale. A macroscopic failure criterion is computed using a three dimensional finite element formulation. The proposed finite element model implements the Strong Discontinuity Approach (SDA) in order to include the localised, fully nonlinear kinematics associated with the failure on the microscale. This numerical application exploits further the Enhanced–Assumed–Strain (EAS) concept to decompose additively the deformation gradient into a conforming part corresponding to a smooth deformation mapping and an enhanced part reflecting the final failure kinematics of the microscale. This finite element formulation is then used for the modelling of the microscale and for the discretisation of a representative volume element (RVE). The macroscopic material behaviour results from numerical computations of the RVE. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A derivation of the Boltzmann equation from the Liouville equation by the use of the Grad limiting procedure in a finite volume is proposed. We introduce two scales of space-time: macro- and microscale and use the BBGKY hierarchy and the functional formulation of classical mechanics. According to the functional approach to mechanics, a state of a system of particles is formed from the measurements, which are rational numbers. Hence, one can speak about the accuracy of the initial probability density function in the Liouville equation. We assume that the initial data for the microscopic density functions are assigned by the macroscopic one (so one can say about a kind of hierarchy and subordination of the microscale to the macroscale) and derive the Boltzmann equation, which leads to the entropy production.  相似文献   

18.
We describe global time existence nd uniqueness results for the wave equations with boundary conditions of Dirichlet type on a characteresitc cone and either Dirichlet or Neumann type on a timelike tube. We find that the solution is in general only half as regular as the data and we provide estimates which describe the differing differentiabilities of the solution in directions which are either tangent or transvers to the characteristic cone.  相似文献   

19.
In this paper, we study the homogenization of a set of Smoluchowski’s discrete diffusion–coagulation equations modeling the aggregation and diffusion of \(\beta \)-amyloid peptide (A\(\beta \)), a process associated with the development of Alzheimer’s disease. In particular, we define a periodically perforated domain \(\Omega _{\epsilon }\), obtained by removing from the fixed domain \(\Omega \) (the cerebral tissue) infinitely many small holes of size \(\epsilon \) (the neurons), which support a non-homogeneous Neumann boundary condition describing the production of A\(\beta \) by the neuron membranes. Then, we prove that, when \(\epsilon \rightarrow 0\), the solution of this micromodel two-scale converges to the solution of a macromodel asymptotically consistent with the original one. Indeed, the information given on the microscale by the non-homogeneous Neumann boundary condition is transferred into a source term appearing in the limiting (homogenized) equations. Furthermore, on the macroscale, the geometric structure of the perforated domain induces a correction in that the scalar diffusion coefficients defined at the microscale are replaced by tensorial quantities.  相似文献   

20.
Asymptotics of eigenelements of a singularly perturbed boundary value problem for the three-dimensional Schrödinger operator is constructed in a bounded domain with the Dirichlet and Neumann boundary condition. The perturbation is described by a large potential whose support contracts into a point. In the case of the Dirichlet boundary conditions, this problem corresponds to a potential well with infinitely high walls and a narrow finite peak at the bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号