首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
2.
Recently an extensive series of measurements has been presented for the angular distributions of oxygen molecules scattered from a graphite surface. Incident translational energies ranged from 291 to 614 meV with surface temperatures from 150 to 500 K. The measurements were taken with a fixed angle of 90° between the source beam and the detector and the angular distributions consisted of a single broad peak with the most probable intensity located at an angle slightly larger than the 45° specular position. Analysis with the hard cubes model for atom-surface scattering indicated that the scattering is primarily a single collision event with a surface having a collective effective mass much larger than a single carbon atom. Limited analysis with a classical diatomic molecular scattering theory was also presented. In this paper a more complete analysis using the classical diatomic molecular scattering theory is presented. The energy and temperature dependence of the observed angular distributions are well described as single collision events with a surface having an effective mass of 1.8 carbon graphite rings. In agreement with the earlier analysis and with other experiments, this suggests a large cooperative response of the carbon atoms in the outermost graphene layer.  相似文献   

3.
Preparation of nanodiamonds by laser irradiation of graphite   总被引:1,自引:0,他引:1  
Graphite powders were irradiated by pulsed laser at room temperature and normal pressure and then boiled in perchloric acid. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), electron diffraction pattern (EDP), X-ray diffraction (XRD) pattern, and Raman spectroscopy. The analyses on the HRTEM images, EDP, and XRD show that the diamond particles with a size of about 5 nm are obtained. The shifting and broadening of the diamond peak in Raman spectrum indicate that there are high defect density and residual internal stress in synthetic diamond.  相似文献   

4.
The presented model predicts thermal boundary conductance at interfaces where one material comprising the junction is characterized by high elastic anisotropy. In contrast to previous approaches, the current methodology accounts for contributions from inelastic scattering through consideration of multiple-phonon interactions. Inelastic contributions become significant as the temperature, as well as the degree of acoustic mismatch between the materials, increases. Inclusion of the inelastic interactions is necessary for a variety of interfacial systems including the metal–graphite boundary examined here. Improvement is shown over existing approaches that address only elastic scattering as both three- and four-phonon interactions significantly augment the transport.  相似文献   

5.
Absolute band gaps in two-dimensional graphite photonic crystal   总被引:1,自引:0,他引:1  
The off-plane propagation of electromagnetic (EM) waves in a two-dimensional (2D) graphite photonic crystal structure was studied using transfer matrix method. Transmission spectra calculations indicate that such a 2D structure has a common band gap from 0.202 to 0.2035 c/a for both H and E polarizations and for all off-plane angles form 0° up to 90°. The presence of such an absolute band gap implies that 2D graphite photonic crystal, which is much easier and more feasible to fabricate, can exhibit some properties of a three-dimensional (3D) photonic crystal.  相似文献   

6.
Potassium graphite intercalation compounds are able to activate C–H bonds of hydrocarbons at room temperature. In this paper, the hydrogen–deuterium exchange of CHD3 in the presence of C8K, C24K and C36K is described.  相似文献   

7.
An equation of state for graphite and diamond has been derived in wide density and temperature ranges. A set of equations for the graphite–diamond phase transition has been presented. Hugoniots for graphite and diamond have been calculated. Numerical simulation data for the graphite–diamond transition in the isentropic compression process using a metallic z-pinch with diamond saving have been reported.  相似文献   

8.
《Current Applied Physics》2010,10(4):1009-1012
In this work, graphite nanofibers (GNFs) as a catalysts supports were impregnated with Pt and Ru precursor compounds to investigate the effect of various Pt–Ru compositions on the catalytic activity of direct methanol fuel cells (DMFCs). The particle sizes and morphological structures of the catalysts were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The electrochemical oxidation of the prepared catalysts was investigated by cyclic voltammetry (CV) measurement. Inductive coupled plasma-mass spectrometer (ICP-MS) analysis showed that the metallic ratio in the catalysts was very near to expectations. Cyclic voltammetry showed that the catalysts were electro catalytically active in the methanol oxidation. Among the prepared catalysts, the Pt50Ru50 catalysts exhibited the best electrocatalytic performance. It was concluded that catalytic activity is dependent on the alloy compositions of the catalysts, and that Ru metal has a positive effect on CO poisoning of Pt metal for methanol oxidation.  相似文献   

9.
The atomic processes associated with energy storage and release in irradiated graphite have long been subject to untested speculation. We examine structures and recombination routes for interstitial-vacancy (I-V) pairs in graphite. Interaction results in the formation of a new metastable defect (an intimate I-V pair) or a Stone-Wales defect. The intimate I-V pair, although 2.9 eV more stable than its isolated constituents, still has a formation energy of 10.8 eV. The barrier to recombination to perfect graphite is calculated to be 1.3 eV, consistent with the experimental first Wigner energy release peak at 1.38 eV. We expect similar defects to form in carbon nanostructures such as nanotubes, nested fullerenes, and onions under irradiation.  相似文献   

10.
何满潮  赵健 《中国物理 B》2013,22(1):16802-016802
Using first-principles methods, we have systematically investigated the electronic density of states, work function, and adsorption energy of the methane molecule adsorbed on graphite(0001) films. The surface energy and the interlayer relaxation of the clean graphite(0001) as a function of the thickness of the film were also studied. The results show that the interlayer relaxation is small due to the weak interaction between the neighboring layers. The one-fold top site is found most favourable on substrate for methane with the adsorption energy of 133 meV. For the adsorption with different adsorption heights above the graphite film with four layers, the methane is found to prefer to appear at about 3.21 A above the graphite. We also noted that the adsorption energy does not dependent much on the thickness of the graphite films. The work function is enhanced slightly by adsorption of methane due to the slight charge transfer from the graphite surface to the methane molecule.  相似文献   

11.
In this contribution we demonstrate that densely packed gold nanoparticles can be grown by Volmer–Weber mode on ferrocenyl functionalized terpyridine (FcTerp) on graphite. FcTerp forms highly ordered and dense self-assembled monolayers (SAMs) on graphite which significantly reduces the diffusion length of gold atoms and increases the sticking coefficient compared to bare graphite. Both effects lead to an increased nucleation and thus, to the growth of densely packed gold nanoparticles with diameters in the nanometer range. The optical properties of the nanoparticles as well as their morphology and the structure of the SAMs were characterized by optical extinction spectroscopy and scanning tunneling microscopy.  相似文献   

12.
The structure of thin films deposited by pulsed laser ablation (PLD) is strongly dependent on experimental conditions, like laser wavelength and fluence, substrate temperature and pressure. Depending on these parameters we obtained various kinds of carbon materials varying from dense, mainly tetrahedral amorphous carbon (ta-C), to less compact vertically oriented graphene nano-particles. Thin carbon films were grown by PLD on n-Si 〈100〉 substrates, at temperatures ranging from RT to 800°C, from a rotating graphite target operating in vacuum. The laser ablation of the graphite target was performed by a UV pulsed ArF excimer laser (λ=193 nm) and a pulsed Nd:YAG laser, operating in the near IR (λ=1064 nm). The film structure and texturing, characterised by X-ray diffraction analysis, performed at grazing incidence (GI-XRD), and the film density, evaluated by X-ray reflectivity measurements, are strongly affected both by laser wavelength and fluence and by substrate temperature. Micro-Raman and GI-XRD analysis established the progressive formation of aromatic clusters and cluster condensation into vertically oriented nano-sized graphene structures as a direct function of increasing laser wavelength and deposition temperature. The film density, negatively affected by substrate temperature and laser wavelength and fluence, in turn, results in a porous bulk configuration and a high macroscopic surface roughness as shown by SEM characterisation. These structural property modifications induce a relevant variation also on the emission properties of carbon nano-structures, as evidenced by field emission measurements. This work is dedicated to our friend Giorgio who passed away 20th August.  相似文献   

13.
How to produce nanobubbles repeatedly on a certain surface with sufficient amount is a key issue in nanobubbles research. It is well known that nanobubbles can be produced by exchanging water with organic solutions like alcohol which contains higher concentration of dissolved gas than that in water. However, it is not clear if this mechanism would work when exchanging water with the relatively low concentrations of dissolved gas such as salt solutions. In this paper, we employed NaCl solutions with different concentrations to replace water on graphite surface. We found that nanobubbles could indeed be generated and showed similar properties with those produced by other methods. Nanobubbles could be apparently observed when the NaCl concentration was as low as 0.15 M and their densities increased with the salt concentrations. When the concentration of NaCl was higher than 2.00 M, the number of nanobubbles increased slowly and nearly kept a constant. We also showed that the dissolved gas played an important role in the formation process of nanobubbles.  相似文献   

14.
Resonant inelastic X-ray scattering of highly oriented pyrolytic graphite (HOPG) is observed above the C 1s threshold at different polarization angles. It is shown that combining the polarization and excitation energy dependence of X-ray emission spectra makes it possible to perform quantitative band mapping selective to the chemical bonding (σ and π).  相似文献   

15.
16.
N-octadecane/expanded graphite composite phase-change materials were prepared by absorbing liquid n-octadecane into the expanded graphite. The n-octadecane was used as the phase-change material for thermal energy storage, and the expanded graphite acted as the supporting material. Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal diffusivity measurement were used to determine the chemical structure, crystalline phase, microstructure and thermal diffusivity of the composite phase-change materials, respectively. The thermal properties and thermal stability were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results indicated that the composite phase-change materials exhibited the same phase-transition characteristics as the n-octadecane and their latent heat increased with the n-octadecane content in composite phase-change materials. The SEM results showed that the n-octadecane was well absorbed in the porous network of the expanded graphite, and there was no leakage of the n-octadecane from the composites even when it was in the molten state.  相似文献   

17.
Density functional theory (DFT) calculations are performed for the adsorption energy of hydrogen and oxygen on graphene decorated with a wide set of metals (Li, Na, K, Al, Ti, V, Ni, Cu, Pd, Pt). It is found that oxygen interferes with hydrogen adsorption by either blocking the adsorption site or by the irreversible oxidation of the metal decoration. The most promising decorations are Ni, Pd, and Pt due to a reasonable relationship of adsorption energies which minimize the oxygen interference. The DFT results are used to parametrize a statistical mechanical model which allows evaluation of the effect of partial pressures in the gas phase during storage. According to this model, even in the most promising case, it is necessary to reduce the oxygen partial pressure close to ultrahigh vacuum conditions to allow hydrogen storage.  相似文献   

18.
Graphite intercalation compounds display a variety of structural properties because of their composite nature (graphite + intercalate) and their layered arrangement. Alkali metal intercalated graphite compounds undergo order-disorder phase transitions when the temperature is varied in the range 300–10 K. The disordered state shows true two-dimensional character, whereas three-dimensional coupling takes place on ordering. Results of single-crystal X-ray diffractometric and photographic studies of stage-2 KC24 single crystals are presented. The positional and orientational correlations of the modulated liquid phase have been studied from 300 K down to the temperature transition Tu = 123.5° K. At the transition, the hexagonal incommensurate solid structure of the alkali metal is modulated by the graphite potential. This transition is discussed in terms of the relaxed-close packed structure model (Dicenzo, 1982). At low temperature a second transition takes place at TL ≈ 95 K. It is found to correspond to the breaking of the 2D hexagonal symmetry of the K layer.  相似文献   

19.
Study of expansion dynamics of pulsed-laser ablation plasmas from Fe and graphite targets is presented. A 532 nm Q-switched Nd:YAG laser with fluence of 30 J cm−2 is used to ablate the Fe and graphite targets in various Ar ambient gas pressures. Plasma ablation parameters for the two target materials are estimated using snow-plow and shock-wave models, which show that the laser beam energy deposited to ablated species remains at 70% for both targets at all ambient pressures. The plume splitting was observed, more prominently, for Fe plasma as it moves faster compared to graphite plasma. The difference in plasma plume fronts’ speeds for different targets was attributed to the significant difference in mass of the ablated plasma for two targets, as estimated from simulation results.  相似文献   

20.
石国升  王志刚  赵纪军  胡钧  方海平 《中国物理 B》2011,20(6):68101-068101
Using density functional theory computation, we show that sodium ions and hydrated sodium ions can be strongly adsorbed onto a hydrophobic graphite surface via cation-π interactions. The key to this cation-π interaction is the coupling of the delocalized π states of graphite and the empty orbitals of sodium ions. This finding implies that the property of the graphite surface is extremely dependent on the existence of the ions on the surface, suggesting that the hydrophobic property of the graphite surface may be affected by the existence of the sodium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号