首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate a novel aspect of rotational tunneling of the macroscopic spin for multicomponent spinor Bose-Einstein condensate (BEC). The Lagrangian is deduced from the multi-component BEC system formalism, and is written in terms of spin coherent states. From the effective Hamiltonian for the collective spin, the tunneling rate is obtained through a functional integral of the spin variable. It is pointed out that the cooperative effect between the Zeeman energy and the anisotropic nature of the spin-dependent inter-atomic interaction plays a key role for occurrence of collective spin tunneling.  相似文献   

2.
We demonstrate the electrical detection of pulsed X-band electron nuclear double resonance (ENDOR) in phosphorus-doped silicon at 5 K. A pulse sequence analogous to Davies ENDOR in conventional electron spin resonance is used to measure the nuclear spin transition frequencies of the (31)P nuclear spins, where the (31)P electron spins are detected electrically via spin-dependent transitions through Si/SiO(2) interface states, thus not relying on a polarization of the electron spin system. In addition, the electrical detection of coherent nuclear spin oscillations is shown, demonstrating the feasibility to electrically read out the spin states of possible nuclear spin qubits.  相似文献   

3.
We report on the inversion of spin-dependent photocurrent via interface localized states formed at the interface of an Fe/n-AlGaAs/GaAs quantum well heterostructure by means of an optical spin orientation technique. A careful adjustment of the excitation photon energy, which is determined by a separate analysis of electroluminescence spectra under a spin injection condition, enables us to explore the spin-dependent characteristics of photoelectron transmission from the quantum well into Fe. The bias dependence of the spin-dependent photocurrent shows clear spikelike features at the voltage which is compatible with the formation of the interface localized resonant states in the Schottky depletion layer.  相似文献   

4.
Using the spacetime algebra formulation of the Dirac equation, we demonstrate how to perform cross-section calculations following a method suggested by Hestenes (1982). Instead of an S-matrix, we use an operator that rotates the initial states into the scattered states. By allowing the scattering operator to become a function of the initial spin, we can neatly handle spin-dependent calculations. When the operator is independent of spin, we can provide manifestly spin-independent results. We use neither spin basis nor spin sums, instead handling the spin orientation directly. As examples, we perform spin-dependent calculations in Coulomb scattering to second order, and briefly consider more complicated calculations in QED.  相似文献   

5.
Experimental evidence is presented showing that photocurrents in silicon can be used as highly sensitive readout probes for coherent spin states of localized electrons, the prime candidates for quantum bits in various semiconductor based quantum computer concepts. Conduction electrons are subjected to fast Rabi oscillation induced by means of pulsed electron spin resonance. The collective spin motion of the charge carrier ensemble is reflected by a spin-dependent recombination rate and therefore by the sample conductivity. Because of inhomogeneities, the Rabi oscillation dephases rapidly. However, a microwave induced rephasing is possible causing an echo effect whose intensity contains information about the charge carrier spin state and the coherence decay.  相似文献   

6.
We theoretically investigate the spin-dependent Seebeck effect in an Aharonov–Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin–orbit interactions under magnetic flux perpendicular to the ring. We apply the Green's function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin–orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin–orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.  相似文献   

7.
We study the effect of Rashba spin-orbit coupling on the Hofstadter spectrum of a two-dimensional tight-binding electron system in a perpendicular magnetic field. We obtain the generalized coupled Harper spin-dependent equations which include the Rashba spin-orbit interaction and solve for the energy spectrum and spin polarization. We investigate the effect of spin-orbit coupling on the fractal energy spectrum and the spin polarization for some characteristic states as a function of the magnetic flux α and the spin-orbit coupling parameter. We characterize the complexity of the fractal geometry of the spin-dependent Hofstadter butterfly with the correlation dimension and show that it grows quadratically with the amplitude of the spin-orbit coupling. We study some ground state properties and the spin polarization shows a fractal-like behavior as a function of α, which is demonstrated with the exponent close to unity of the decaying power spectrum of the spin polarization. Some degree of spin localization or distribution around +1 or -1, for small spin-orbit coupling, is found with the determination of the entropy function as a function of the spin-orbit coupling. The excited states show a more extended (uniform) distribution of spin states.  相似文献   

8.
Favored schemes for trapped-ion quantum logic gates use bichromatic laser fields to couple internal qubit states with external motion through a "spin-dependent force." We introduce a new degree of freedom in this coupling that reduces its sensitivity to phase decoherence. We demonstrate bichromatic spin-dependent forces on a single trapped 111Cd+ ion, and show that phase coherence of the resulting entangled states of spin and motion depends critically upon the spectral arrangement of the optical fields. This applies directly to the operation of entangling gates on multiple ions.  相似文献   

9.
By means of a diagram technique for Hubbard operators, we show the existence of a spin-dependent renormalization of the localized levels in an interacting region, e.g., quantum dot, modeled by the Anderson Hamiltonian with two conduction bands. It is shown that the renormalization of the levels with a given spin direction is due to kinematic interactions with the conduction subbands of the opposite spin. The consequence of this dressing of the localized levels is a drastically decreased tunneling current for ferromagnetically ordered leads compared to that of paramagnetically ordered leads. Furthermore, the studied system shows a spin-dependent resonant tunneling behavior for ferromagnetically ordered leads.  相似文献   

10.
The time evolution of spontaneous decay of a two-level atom in one dimension photonic crystals is investigated with three different methods : ( 1 ) using the Markovian approximation, (2) using the constant approximation, and (3) without using any of the two approximations. The second and third methods are Non-Markovian, which yield similar results. The second method gives us a clear physical picture of the effect of the reflected field. The Non- Markovian processes due to the reflected field have great influence on the atomic decay mainly within one tenth of an optical cycle, and reach steady state influence fter one optical cycle. The result of Markovian approximation gives almost the same result of the other two methods after one optical cycle, but misses the details within the one optical cycle.  相似文献   

11.
The linearized collective Schrödinger equation for nuclear quadrupole surface vibrations incorporates a new spin degree of freedom with a spin value of 3/2. We use this equation to describe the low energy spectrum of certain even-odd Ir nuclei which have a spin 3/2 in their ground state. For that purpose we explicitly introduce collective spin-dependent potentials which simulate the interaction of the valence nucleon with the core. The linearized Schrödinger equation is transformed into an effective Schrödinger equation with collective spin-dependent potentials. Already collective spin-orbit couplings of SO(3) and SO(5) type are sufficient to reproduce the lowest excited states of even-odd Ir nuclei.  相似文献   

12.
提出了一种基于Pancharatnam-Berry相位和动力学相位操控纵向光子自旋霍尔效应的方法.理论分析表明:当光场通过一个由Pancharatnam-Berry相位透镜和动力学相位透镜构成的透镜组时,透镜组会存在两个自旋相关的焦点.首先,当左旋和右旋圆偏振光通过微结构相位延迟为π的Pancharatnam-Berry相位透镜时,由于Pancharatnam-Berry相位的自旋相关性,两个圆偏振分量会获得符号相反的Pancharatnam-Berry相位而导致其中一个被聚焦而另一个发散.然后,在Pancharatnam-Berry相位透镜后再插入普通透镜引入动力学相位调制,由于动力学相位是自旋无关,使得这一透镜组,可以在合适的条件下使不同自旋态的光子分别聚焦于纵向上不同焦点处.纵向自旋分裂由两透镜焦距及间距共同决定,因此可以通过改变两个透镜的焦距及其间距获得任意的纵向自旋分裂值.最后,搭建了一套实验装置,所得实验结果与理论结果一致.  相似文献   

13.
Yilin Mi  Ming Zhang  Hui Yan 《Physics letters. A》2008,372(42):6434-6437
We use the two-component drift-diffusion model to study the spin density polarization in an organic semiconductor system under an external electric-field. The spin-dependent electrical-conductivity, the drift spin current and the diffusion spin current in the organic semiconductor are self-consistently derived. It is found that the spin current could be strongly influenced by the spin-dependent electrical-conductivity. When the spin-dependent conductivity varies from 0 to 0.5%, the spin current presents a very pronounced change almost three orders in magnitude. The electric-field could effectively enhance the spin-dependent electrical-conductivity and the spin current. Furthermore, the spin-dependent electrical-conductivity is position sensitive, but its position sensitivity goes down while electric-field is larger than about 1 mV/μm.  相似文献   

14.
Spin-dependent near-edge absorption spectroscopy is presented as a new method for studying the spin density of states near the Fermi level at the absorbing atom site. Using circularly polarized synchrotron radiation the spin-dependent inner-shell absorption coefficient is measured as a function of the photoelectron energy. The spin-dependent absorption profile is expected to reflect directly the spin-density distribution of the states populated in the absorption process. The spin densities of 3d-and 4f-elements in pure systems, ferromagnetic alloy and compounds, and 5d-impurities in Fe have been investigated. The results are compared with spin-resolved band-structure calculations for the ferromagnetic ground state.  相似文献   

15.
From first-principles calculations, we predict that specific transition metal (TM) atom-adsorbed silicon nanowires have a half-metallic ground state. They are insulators for one spin direction, but show metallic properties for the opposite spin direction. At high coverage of TM atoms, ferromagnetic silicon nanowires become metallic for both spin directions with high magnetic moment and may have also significant spin polarization at the Fermi level. The spin-dependent electronic properties can be engineered by changing the type of adsorbed TM atoms, as well as the diameter of the nanowire. Present results are not only of scientific interest, but also can initiate new research on spintronic applications of silicon nanowires.  相似文献   

16.
17.
We study the spin-dependent electron transport through parallel coupled quantum dots (QDs) embedded in an Aharonov-Bohm (AB) interferometer connected asymmetrically to leads. Both the Rashba spin-orbit interaction (RSOI) inside one of the QDs, which acquires a spin-dependent phase factor in the tunnel-coupling strengths when the electrons flow through this arm of the AB ring, and an inhomogeneous magnetic flux penetrating the structure are taken into account. Due to the existence of the RSOI induced phase factor, magnetic flux and the interdot coupling, a spin-dependent Fano effect will arise. We pay special attention on the properties of the local density of states and the conductance when the electron phase factor is close to integer multiplies of a quantum of flux. It is shown that the roles and lifetimes of the bonding and antibonding states of the two spin components are very sensitive to the phase factor and can be well controlled accordingly. This manipulation of the spin degree of freedom relies on the existence of RSOI but can be fulfilled even when its strength is very weak. The proposed structure can be easily realized with present technology and might be of practical applications in spintronics devices and quantum computing.  相似文献   

18.
Magnetic field can influence photoluminescence, electroluminescence, photocurrent, injection current, and dielectric constant in organic materials, organic–inorganic hybrids, and nanoparticles at room temperature by re-distributing spin populations, generating emerging phenomena including magneto-photoluminescence, magneto-electroluminescence, magneto-photocurrent, magneto-electrical current, and magneto-dielectrics. These so-called intrinsic magnetic field effects (MFEs) can be observed in linear and non-linear regimes under one-photon and two-photon excitations in both low- and high-orbital materials. On the other hand, spin injection can be realized to influence spin-dependent excited states and electrical conduction via organic/ferromagnetic hybrid interface, leading to extrinsic MFEs. In last decades, MFEs have been serving as a unique experimental tool to reveal spin-dependent processes in excited states, electrical transport, and polarization in light-emitting diodes, solar cells, memories, field-effect transistors, and lasing devices. Very recently, they provide critical understanding on the operating mechanisms in advanced organic optoelectronic materials such as thermally activated delayed fluorescence light-emitting materials, non-fullerene photovoltaic bulk-heterojunctions, and organic–inorganic hybrid perovskites. While MFEs were initially realized by operating spin states in organic semiconducting materials with delocalized π electrons under negligible orbital momentum, recent studies indicate that MFEs can also be achieved under strong orbital momentum and Rashba effect in light emission, photovoltaics, and dielectric polarization. The transition of MFEs from the spin regime to the orbital regime creates new opportunities to versatilely control light-emitting, photovoltaic, lasing, and dielectric properties by using long-range Coulomb and short-range spin–spin interactions between orbitals. This article reviews recent progress on MFEs with the focus on elucidating fundamental mechanisms to control optical, electrical, optoelectronic, and polarization behaviors via spin-dependent excited states, electrical transport, and dielectric polarization. In this article both representative experimental results and mainstream theoretical models are presented to understand MFEs in the spin and orbital regimes for organic materials, nanoparticles, and organic–inorganic hybrids under linear and non-linear excitation regimes with emphasis on underlying spin-dependent processes.  相似文献   

19.
We prove that in the absence of explicit spin-dependent forces one of the ground states of interacting bosons with spin is always fully polarized. Generally, this state is degenerate with other states, but one can specify the exact degeneracy. For T>0, the magnetization and zero-field susceptibility exceed that of a pure paramagnet. The results are relevant to experimental work on triplet superconductivity and condensation of atoms with spin. They eliminate the possibility, raised in some theoretical speculations, that the ground state or positive temperature state might be antiferromagnetic.  相似文献   

20.
Rashba billiards     
We study the energy levels of non-interacting electrons confined to move in two-dimensional billiard regions and having a spin-dependent dynamics due to a finite Rashba spin splitting. The free space Green's function for such Rashba billiards is constructed analytically and used to find the area and perimeter contributions to the density of states, as well as the corresponding smooth counting function. We show that, in contrast to systems with spin-rotational invariance, Rashba billiards always possess a negative energy spectrum. A semi-classical analysis is presented to interpret the singular behavior of the density of states at certain negative energies for circular Rashba billiards. Our detailed analysis of the spin structure of circular Rashba billiards reveals a finite out-of-plane spin projection for electron eigenstates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号