首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
We analyze the thermal fluctuations of particles that have a short-range dipolar attraction and a long-range repulsion. In an inhomogeneous particle density region, or "soft phase," filamentary patterns appear which are destroyed only at very high temperatures. The filaments act as a fluctuating template for correlated percolation in which low-energy excitations can move through the stable pattern by local rearrangements. At intermediate temperatures, dynamically averaged checkerboard states appear. We discuss possible implications for doped cuprate oxides and related materials.  相似文献   

2.
We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.  相似文献   

3.
Using a numerical algorithm based on the time evolution of normal modes, we calculate the coefficient of restitution eta for various one-dimensional harmonic solids colliding with a hard wall. We find that, for a homogeneous chain, eta=1 in the thermodynamic limit. However, for a chain in which weaker springs are introduced in the colliding front half, eta remains significantly less than one even in the thermodynamic limit, and the "lost" energy goes mostly into low frequency normal modes. An understanding of these results is given in terms of how the energy is redistributed among the normal modes as the chain collides with the wall. We then contrast these results with those for collisions of one-dimensional harmonic solids with a soft wall. Using perturbation theory, we find that eta=1 for all harmonic chains in the extremely soft wall limit, but that inelasticity grows with increasing chain size in contrast to hard wall collisions.  相似文献   

4.
This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determines the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.  相似文献   

5.
Glasses behave as solids on experimental time scales due to their slow relaxation. Growing dynamic length scales due to cooperative motion of particles are believed to be central to this slow response. For quiescent glasses, however, the size of the cooperatively rearranging regions has never been observed to exceed a few particle diameters, and the observation of long-range correlations has remained elusive. Here, we provide direct experimental evidence of long-range correlations during the deformation of a dense colloidal glass. By imposing an external stress, we force structural rearrangements, and we identify long-range correlations in the fluctuations of microscopic strain and elucidate their scaling and spatial symmetry. The applied shear induces a transition from homogeneous to inhomogeneous flow at a critical shear rate, and we investigate the role of strain correlations in this transition.  相似文献   

6.
We use confocal microscopy to study particle motion in colloidal systems. Near the glass transition, motion is inhibited, as particles spend time trapped in transient "cages" formed by neighboring particles. We measure the cage sizes and lifetimes, which, respectively, shrink and grow as the glass transition approaches. Cage rearrangements are more prevalent in regions with lower concentrations and higher disorder. Neighboring rearranging particles typically move in parallel directions, although a nontrivial fraction moves in antiparallel directions, usually from particle pairs with initial separations corresponding to local maxima and minima of the pair correlation function g(r), respectively.  相似文献   

7.
脉冲软X射线发生器的实验研究   总被引:2,自引:0,他引:2  
本文研究了喷气式Z箍缩等离子体中软X射线(2keV相似文献   

8.
Fluctuations of the instantaneous local Lagrangian strain epsilon(ij)(r,t), measured with respect to a static "reference" lattice, are used to obtain accurate estimates of the elastic constants of model solids from atomistic computer simulations. The measured strains are systematically coarse-grained by averaging them within subsystems (of size L(b)) of a system (of total size L) in the canonical ensemble. Using a simple finite size scaling theory we predict the behavior of the fluctuations as a function of L(b)/L and extract elastic constants of the system in the thermodynamic limit at nonzero temperature. Our method is simple to implement, efficient, and general enough to be able to handle a wide class of model systems, including those with singular potentials without any essential modification. We illustrate the technique by computing isothermal elastic constants of "hard" and "soft" disk triangular solids in two dimensions from Monte Carlo and molecular dynamics simulations. We compare our results with those from earlier simulations and theory.  相似文献   

9.
We study experimentally the dynamical heterogeneities occurring at slow shear, in a model amorphous glassy material, i.e., a 3D granular packing. The deformation field is resolved spatially by using a diffusive wave spectroscopy technique. The heterogeneities show up as localized regions of strong deformations spanning a mesoscopic size of about 10 grains and called the "hot spots." The spatial clustering of hot spots is linked to the subsequent emergence of shear bands. Quantitatively, their appearance is associated with the macroscopic plastic deformation, and their rate of occurrence gives a physical meaning to the concept of "fluidity," recently used to describe the local and nonlocal rheology of soft glassy materials.  相似文献   

10.
顾本源 《物理学进展》2011,8(2):125-169
本文主要介绍晶体中公度-无公度相变。无公度相是结构相变的产物,它与软模概念有着紧密联系。应用朗道的相变唯象理论可以相当好地解释这一相变行为,本文将给予详细综述。基于朗道自由能公式,讨论了无公度相的热力学性质,介电性质和弹性性质,以及杂质和缺陷将影响相变过程,杂质的“钉扎”效应导致各种观察量在相变过程中出现滞后现象。最后,无公度相中的新元激发-振幅子和相位子的色散特性,也从唯象观点作了讨论。主要的理论结果将与有关的实验数据和曲线进行比较,同时指出理论不完善之处以及尚待进一步研究的课题。  相似文献   

11.
A brief review of molecular simulations of physical ageing in structural glasses and its influence on their mechanical properties is presented. Recent studies based on simple molecular models of glass forming solids reproduce a wealth of experimental phenomena, and provide additional insight into the molecular rearrangements that govern ageing and yield. Phenomenological models are summarised that describe the effect of ageing on yield and compliance under applied strain or stress, respectively. Modifications of ageing due to plastic deformation (rejuvenation and overageing) are also discussed.  相似文献   

12.
We consider a model of a dynamical Lorentz gaz: a single particle is moving in \({\mathbb {R}}^d\) through an array of fixed and soft scatterers each possessing an internal degree of freedom coupled to the particle. Assuming the initial velocity is sufficiently high and modelling the parameters of the scatterers as random variables, we describe the evolution of the kinetic energy of the particle by a Markov chain for which each step corresponds to a collision. We show that the momentum distribution of the particle approaches a Maxwell–Boltzmann distribution with effective temperature T such that \(k_BT\) corresponds to an average of the scatterers’ kinetic energy.  相似文献   

13.
The subject of this study is the long-time equilibration dynamics of a strongly disordered one-dimensional chain of coupled weakly anharmonic classical oscillators. It is shown that chaos in this system has a very particular spatial structure: it can be viewed as a dilute gas of chaotic spots. Each chaotic spot corresponds to a stochastic pump which drives the Arnold diffusion of the oscillators surrounding it, thus leading to their relaxation and thermalization. The most important mechanism of equilibration at long distances is provided by random migration of the chaotic spots along the chain, which bears analogy with variable-range hopping of electrons in strongly disordered solids. The corresponding macroscopic transport equations are obtained.  相似文献   

14.
Soft x-rays from a laser-produced plasma were used to perform innershell photoionization of Cd atoms and to generate laser radiation at 442 nm. To achieve longer interaction zones between the Cd vapor and the soft x-ray flux, up to three plasma spots have been applied. In this way a maximum laser energy of 300 J with a 600 mJ Nd:YAG laser for the plasma production was achieved. Experimental investigations and corresponding rate-equation calculations indicate, that photoelectrons play an important role in the total laser kinetics.  相似文献   

15.
Microscopic motions in molten potassium spanning three frequency decades are studied by neutron-scattering techniques. These comprise well-defined density oscillations and stochastic particle rearrangements and both are modeled on microscopic grounds. While vibratory motions are shown to share characteristics with those of their parent crystals, dynamic correlations between a diffusing particle and its neighbors can be accounted for only semiquantitatively.  相似文献   

16.
Modulations of the friction force in dry solid friction are usually attributed to macroscopic stick-slip instabilities. Here we show that a distinct, quasistatic mechanism can also lead to nearly periodic force oscillations during sliding contact between an elastomer patterned with parallel grooves, and abraded glass slides. The dominant oscillation frequency is set by the ratio between the sliding velocity and the grooves period. A model is derived which quantitatively captures the dependence of the force modulations amplitude with the normal load, the grooves period, and the slides roughness characteristics. The model's main ingredient is the nonlinearity of the friction law. Since such nonlinearity is ubiquitous for soft solids, this "fingerprint effect" should be relevant to a large class of frictional configurations and have important consequences in human digital touch.  相似文献   

17.
本文在6分离器CFB冷态试验台上,研究了炉顶凸起空间对气固流动的影响。利用差压法测量炉膛颗粒浓度轴向分布,采用光纤探针测量不同位置的颗粒浓度和速度的径向分布,通过积料法测量6分离器的颗粒循环流率。通过试验结果的分析,得到炉顶凸起空间内的颗粒运动特性,以及不同凸起高度时的炉膛环核流动特性和颗粒外循环特性。本文的研究对大型多分离器布置CFB锅炉的结构优化设计具有参考意义。  相似文献   

18.
We analyze the dynamics of a 3D granular packing composed of particles of irregular polyhedral shape confined inside a rectangular box with a retaining wall subjected to horizontal harmonic forcing. The simulations are performed by means of the contact dynamics method for a broad set of loading parameters. We explore the vibrational dynamics of the packing, the evolution of solid fraction and the scaling of dynamics with the loading parameters. We show that the motion of the retaining wall is strongly anharmonic as a result of jamming and grain rearrangements. It is found that the mean particle displacement scales with inverse square of frequency, the inverse of the force amplitude and the square of gravity. The short-time compaction rate grows in proportion to frequency up to a characteristic frequency, corresponding to collective particle rearrangements between equilibrium states, and then it declines in inverse proportion to frequency.  相似文献   

19.
Dynamics of late-stage phase separation in crystalline solids   总被引:2,自引:0,他引:2  
The dynamics of Ostwald ripening in elastically stressed crystalline solids is determined through large-scale numerical simulations. Using the insight provided by the simulations, a theory for the dynamics of late-stage phase separation in elastically anisotropic homogeneous solids is developed. Both the theory and simulations show that for the systems considered elastic stress does not alter the exponent of the temporal power law for the average particle size but does affect the amplitude of the power law in a manner that is only a function of the symmetry of the particle morphology.  相似文献   

20.
This study compares ultrasonic wave propagation modeling and experimental data in concrete. As a consequence of its composition and manufacturing process, this material has a high elastic scattering (sand and aggregates) and air (microcracks and porosities) content. The behavior of the "Waterman-Truell" and "Generalized Self Consistent Method" dynamic homogenization models are analyzed in the context of an application for strong heterogeneous solid materials, in which the scatterers are of various concentrations and types. The experimental validations of results predicted by the models are carried out by making use of the phase velocity and the attenuation of longitudinal waves, as measured by an immersed transmission setup. The test specimen material has a cement-like matrix containing spherical inclusions of air or glass, with radius close to the ultrasonic wavelength. The models are adapted to the case of materials presenting several types of scattering particle, and allow the propagation of longitudinal waves to be described at the scale of materials such as concrete. The validity limits for frequency and for particle volume ratio can be approached through a comparison with experimental data. The potential of these homogenization models for the prediction of phase velocity and attenuation in strongly heterogeneous solids is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号