首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a new method for determining the elasto-dynamic stress fields associated with the propagation of anti-plane kinked or branched cracks. Our approach allows the exact calculation of the corresponding dynamic stress intensity factors. The latter are very important quantities in dynamic brittle fracture mechanics, since they determine the crack path and eventual branching instabilities. As a first illustration, we consider a semi-infinite anti-plane straight crack, initially propagating at a given time-dependent velocity, that changes instantaneously both its direction and its speed of propagation. We will give the explicit dependence of the stress intensity factor just after kinking as a function of the stress intensity factor just before kinking, the kinking angle and the instantaneous velocity of the crack tip.  相似文献   

2.
动态裂纹扩展中的分形效应   总被引:20,自引:0,他引:20  
谢和平 《力学学报》1995,27(1):18-27
假设裂纹顶端沿着分形轨迹运动,建立了裂纹扩展的分形弯折(kinking)模型来描述裂纹的动态扩展。根据这个模型,我们推导了分形裂纹扩展对劝态应力强度和裂纹速度的影响.动态应力强度因子与表观应力强度因子之比K(l(t),V)/K(L(t),O)是表观裂纹速度V_O,材料微结构参数(d/Δa),分维D和裂纹扩展路径的弯折角θ的函数。本文研究结果表明:在分形裂纹扩展中,表观(或量测)的裂纹速度V_O很难接近Rayleigh波速C_r.动态断裂实验中V_O明显低于C_r的原因可能是分形裂纹扩展效应所致。材料的微结构,裂纹扩展路径的分维和弯折角均很强地影响动态应力强度因子和裂纹扩展速度。  相似文献   

3.
裂纹的聚集、扩展、分叉是岩石等脆性材料破坏失效的关键因素,本文在验证了近场动力学方法在研究岩石类材料裂纹动态扩展方面的有效性之后,采用近场动力学方法分别对冲击载荷作用下含有双裂纹岩石材料和单轴压缩作用下含单斜裂纹的岩石材料进行数值模拟.结果表明,对于双垂直裂纹,其裂纹扩展路径大致与预制裂纹成70°夹角;对于单裂纹,裂纹的扩展路径随裂纹倾角的变化而变化,最终导致构件的整体破坏.数值模拟结果表明近场动力学方法可以很好地模拟岩石等脆性材料的裂纹扩展直至破坏的过程,反映裂纹扩展的物理机理;其作为一种新的基于非局部理论的数值方法,在地下岩体工程方面及页岩气的开采方面会有很好的发展前景.  相似文献   

4.
Computational crack path prediction   总被引:1,自引:0,他引:1  
A computer program has been developed for the numerical prediction of curved crack growth paths under proportional loading conditions. The numerical prediction is performed by the step-by-step method in cooperation with the stress analysis ahead of the crack tip and the determination of the curved increment of the crack growth. The stress analysis is performed by the method of superposition of analytical and finite-element solutions, and the results are then utilized to determine the coefficients of the analytical expression of the curved crack path obtained by the first order perturbation method.The first numerical example is given for the crack path prediction in DCB-type specimen, where we often observe abrupt crack curving. Computational prediction is performed by introducing slight and small initial branching at the original crack tip. Within few steps of numerical calculations unstable crack curving is obtained, and the predicted path shows extremely good agreement with the experimentally measured path. The second numerical prediction is made for an edge crack approaching a circular hole, which may be considered as a crack arrester. In the present case the effect of the initially introduced slight kink diminishes with increasing crack length. The crack turns back to the original direction, resulting arrest at the hole.  相似文献   

5.
A solution is presented for a class of two-dimensional electroelastic branched crack problems. Explicit Green's function for an interface crack subject to an edge dislocation is developed using the extended Stroh formulation allowing the branched crack problem to be expressed in terms of coupled singular integral equations. The integral equations are obtained by the method that models a kink as a continuous distribution of edge dislocations, and the dislocation density function is defined on the line of the branch crack only. Competition between crack extension along the interface and kinking into the substrate is investigated using the integral equations and the maximum energy release rate criterion. Numerical results are presented to show the effect of electric field on the path of crack extension. The work was supported by the Australian Research Council through a Queen Elizabeth II fellowship and by the Australian Academy of Science through the J.G. Russell Award.  相似文献   

6.
We have developed a novel specimen for studying crack paths in glass. Under certain conditions, the specimen reaches a state where the crack must select between multiple paths satisfying the K II = 0 condition. This path selection is a simple but challenging benchmark case for both analytical and numerical methods of predicting crack propagation. We document the development of the specimen, using an uncracked and instrumented test case to study the effect of adhesive choice and validate the accuracy of both a simple beam theory model and a finite element model. In addition, we present preliminary fracture test results and provide a comparison to the path predicted by two numerical methods (mesh restructuring and XFEM). The directional stability of the crack path and differences in kink angle predicted by various crack kinking criteria is analyzed with a finite element model.  相似文献   

7.
Effects of fractal crack   总被引:1,自引:0,他引:1  
Experimental results indicate that propagation paths of cracks in geomaterials are often irregular, producing rough fracture surfaces which are fractal. In this paper, crack tip motion along a fractal crack trace is discussed. A fractal kinking model of the crack extension path is established to describe irregular crack growth. The length, velocity and kinking effects of the fractal crack are analysed. A formula is derived to describe the effects of fractal crack propagation on the dynamic stress intensity factor and on crack velocity. Finally, expressions of stress and displacement fields near the fractal crack tip are given.  相似文献   

8.
CTS试件中复合型疲劳裂纹扩展   总被引:3,自引:0,他引:3  
马世骧  胡泓 《力学学报》2006,38(5):698-704
针对复合型循环载荷作用下的金属构件中的裂纹扩展问题进行了实验分析和理论建模. 首先 采用紧凑拉剪试件(CTS)和 Richard研制的复合型载荷加载装置,对承受复合型循环载荷的裂纹进行了实验研究. 实验选择了两种金属材料试件,分别承受3种形式的复合型循环载荷的作用,在裂纹尖端具 有相同的初始应力场强度的条件下考察复合型循环载荷对裂纹扩展规律的影响. 实验结果表明,疲劳裂纹的扩展速率与加载角度有关. 对于同样金属材料的试件,当裂尖处 初始应力场强度相等时,载荷越接近于II型,裂纹增长速率越快. 采用等效应力强度 因子(I型和II型应力强度因子的组合)、裂纹扩展速率及复合强度等参数,以实验数据为 基础,建立了一个疲劳裂纹扩展模型,用来预测裂纹在不同模式疲劳载荷作用下的扩展速率. 为验证其有效性,该模型被应用于钢制试件的数值模拟计算中. 实验结果与模拟计算曲线保 持一致,表明该模型可以用来估算带裂纹金属构件的寿命.  相似文献   

9.
The general equations for a dynamically curved crack in an anisotropic solid are derived, and the asymptotic fields of a moving crack under arbitrary distributed loading on the crack surface are calculated from them. For a moving crack under mixed-mode loading conditions a general Muskhelishvili type approach is proposed to calculate intensity factors due to crack surface loading in anisotropic materials. The kinking and curving caused by dynamic loading in anisotropic materials are calculated using the maximum normal stress ratio criterion. The results show that cracks in anisotropic solids may deviate from the straight path and approach a direction parallel to the stiff axis even under symmetric loading and that a crack will tend to deviate more from the crack path to the direction of the stiff axis as the crack speed becomes higher.  相似文献   

10.
The authors recently theoretically studied crack kinking and opening from an initially closed crack (without friction) in some homogeneous medium. The same problem, but for an interface crack, is considered here. Comninou has shown that the asymptotic stress field prior to kinking is governed by a single, mode II stress intensity factor (SIF). Using this result, plus a homogeneity property of the problems of elastic fracture mechanics with unilateral contact envisaged, a change of scale, and two reasonable hypotheses, we establish the expression of the SIF at the tip of the small, open crack extension. It is shown that whatever the geometry of the external boundary and the crack and whatever the loading, these SIF depend solely upon the initial (mode II) SIF (in a linear way), the kink angle and Dundurs' parameters α and β. Using this result and Goldstein and Salganik's “principle of local symmetry” to predict the kink angle, one finds that it is independent of the loading but does depend upon Dundurs' parameters α and β. This contrasts with the case of an ordinary (initially closed) crack in some homogeneous medium, for which the kink angle was not only independent of the loading but an absolute constant. However, it is numerically found that the influence of the mismatch of elastic properties upon the kink angle is rather weak.  相似文献   

11.
The elastic crack interaction with internal defects, such as microcracks, voids and rigid inclusions, is investigated in this study for the purpose of analyzing crack propagation. The elastic stress field is obtained using linear theory of elasticity for isotropic materials. The cracks are modeled as pile-ups of edge dislocations resulting into a coupled set of integral equations, whose kernels are those of a dislocation in a medium with or without an inclusion or void. The numerical solution of these equations gives the stress intensity factors and the complete stress field in the given domain. The solution is valid for a general solid, however the propagation analysis is valid mostly for brittle materials. Among different propagation models the ones based on maximum circumferential stress and minimum strain energy density theories, are employed. A special emphasis is given to the estimation of the crack propagation direction that defines the direction of crack branching or kinking. Once a propagation direction is determined, an improved model dealing with kinked cracks must be employed to follow the propagation behavior.  相似文献   

12.
A distributed dislocation dipole technique for the analysis of multiple straight, kinked and branched cracks in an elastic half plane has been developed. The dipole density distribution is represented with a weighted Jacobi polynomial expansion where the weight function captures the asymptotic behaviour at each end of the crack. To allow for opening and sliding at crack kinking and branching the dipole density representation contains conditional extra terms which fulfills the asymptotic behaviour at each endpoint. Several test cases involving straight, kinked and branched cracks have been analysed, and the results suggest that the accuracy of the method is within 1% provided that Jacobi polynomial expansions up to at least the sixth order are used. Adopting even higher order Jacobi polynomials yields improved accuracy. The method is compared to a simplified procedure suggested in the literature where stress singularities associated with corners at kinking or branching are neglected in the representation for the dipole density distribution. The comparison suggests that both procedures work, but that the current procedure is superior, in as much as the same accuracy is reached using substantially lower order polynomial expansions.  相似文献   

13.
A perturbation technique developed by Karihaloo et al. is employed to obtain the stress intensity factors at the tip of a kinking crack that emanates from the free surface of a beam under pure bending. Under the condition that the kink extends in the direction of vanishing K11 the crack path is obtained as well as a path stability condition. From conditions on K1 a material parameter r* akin to that of Ramulu and Kobayashi's rc is obtained. By analysis of the slope of the kinking crack a stability condition is obtained corroborating the stability condition from consideration of vanishing K11. It is shown that for a beam in pure bending the nonsingular remote stress term T must be greater than some positive critical value for kinking to occur confirming the results of Sayir and Schindler.  相似文献   

14.
为了开展在不同冲击载荷作用下巷道围岩内裂纹的起裂、扩展及止裂等问题,以可调速冲击试验机进行动态加载试验,采用致密青砂岩制作裂纹巷道模型试件,并利用裂纹扩展计分别记录了动态起裂、扩展、止裂等时刻,对裂纹扩展速度的变化规律进行分析;随后采用AUTODYN有限差分法软件进行相应的数值模拟,数值模拟得到的裂纹扩展路径与试验结果基本一致。经过两者对比分析可知:随着冲击载荷作用的增加,裂纹平均扩展速度逐渐增大,随后趋于稳定值;预制裂纹的起裂时间随着冲击速度载荷的增加而逐渐降低,并在稳定值上下波动;随着冲击速度载荷的增加,裂纹扩展路径过程中的止裂时段逐渐变短。  相似文献   

15.
材料断裂面的泛形特征是由于材料内部不均匀造成的.本文利用纳米压痕实验测得的弹性模量随机样本,得到了表示材料非均匀特性的Weibull统计分布参数;对含裂纹的HT250试件的裂纹扩展过程进行了基于扩展有限元法的数值模拟,在此结果上计算了裂纹扩展路径的泛形复杂度,模拟结果与试验结果吻合较好;分析了铝合金7075不同均质度对非均匀模型裂纹扩展的影响.研究结果表明,灰口铸铁的Ⅰ型裂纹扩展路径具有泛形特征,裂纹的泛形复杂度依赖于材料的非均匀性且呈负相关关系.该研究方法也适用于其他应力应变呈单值关系材料的裂纹扩展分析.  相似文献   

16.
岩石类材料裂纹分叉非规则性几何的分形效应   总被引:6,自引:0,他引:6  
本文考察了岩石裂纹(从晶粒尺寸的微裂纹到几千米的断层构造)的分叉在几何上存在的非规则性,在文献[10,11]的基础上,应用分形(fractal)几何建立了裂纹分叉的分形模型,分析了裂纹分叉的分形效应,从几何的角度研究了裂纹分叉使断裂韧性提高的物理力学现象,导出了一个比smith公式更合理的断裂韧性计算式。  相似文献   

17.
光滑试样表面疲劳裂纹演化的数值仿真   总被引:2,自引:0,他引:2  
考虑裂纹形核,扩展,合并以及晶界的作用等因素,对光滑圆试样表面疲劳裂纹的演化进行了数值模拟。结果表明,疲劳裂纹系统的演化是由无序向有序转化的过程,演化诱致突变。这一过程与实验观察到的结果一致。疲劳裂纹系统的演化终态具有很大的分散性,主要表现为裂纹路径的随机性和突变寿命的分散性。样本的随机性是造成上述分散性的外因,系统对裂纹位形的敏感性是内因。  相似文献   

18.
MESHLESS METHOD FOR 2D MIXED-MODE CRACK PROPAGATION BASED ON VORONOI CELL   总被引:1,自引:0,他引:1  
A meshless method integrated with linear elastic fracture mechanics (LEFM) is presented for 2D mixed-mode crack propagation analysis. The domain is divided automatically into sub-domains based on Voronoi cells, which are used for quadrature for the potential energy. The continuous crack propagation is simulated with an incremental crack-extension method which assumes a piecewise linear discretization of the unknown crack path. For each increment of the crack extension, the meshless method is applied to carry out a stress analysis of the cracked structure. The J-integral, which can be decomposed into mode I and mode II for mixed-mode crack, is used for the evaluation of the stress intensity factors (SIFs). The crack-propagation direction, predicted on an incremental basis, is computed by a criterion defined in terms of the SIFs. The flowchart of the proposed procedure is presented and two numerical problems are analyzed with this method. The meshless results agree well with the experimental ones, which validates the accuracy and efficiency of the method.  相似文献   

19.
Crack propagation in an isotropic 2d brittle material is widely viewed as the interplay between two separate criteria. Griffith's cap on the energy release rate along the crack path decides when the crack propagates, while the Principle of Local Symmetry PLS decides how, that is, in which direction, that crack propagates. The PLS, which essentially predicts mode I propagation, cannot possibly hold in an anisotropic setting. Further it disagrees with its competitor, the principle of maximal energy release, according to which the direction of propagation should coincide with that of maximal energy release. Also, continuity of the time propagation is always implicitly assumed.In the spirit of the rapidly growing variational theory of fracture, we revisit crack path in the light of an often used tool in physics, i.e. energetic meta-stability of the current state among suitable competing crack states. In so doing, we do not need to appeal to either isotropy, or continuity in time. Here, we illustrate the impact of meta-stability in a 2d setting. In a 2d isotropic setting, it recovers the PLS for smooth crack paths. In the anisotropic case, it gives rise to a new criterion. But, of more immediate concern to the community, it also demonstrates that 2d crack kinking in an isotropic setting is incompatible with continuity in time of the propagation. Consequently, if viewing time continuity as non-negotiable, our work implies that the classical view of crack kinking along a single crack branch is not correct and that a change in crack direction necessarily involves more subtle geometries or evolutions.  相似文献   

20.
The initial kinking of a thin fracture process zone near the crack tip under plane strain is studied using the Wiener-Hopf method. The crack is located at the interface between dissimilar elastic media. The fracture process zone is modeled by a straight line of normal displacement discontinuity emerging from the crack tip at an angle to the interface. The angle between the process zone and the interface is determined from the condition of strain energy maximum in the process zone. The dependences of the length and angle of the process zone on the external load and other parameters of the problem are studied. The results are compared with theoretical and experimental data obtained by other researchers __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 10, pp. 28–41, October 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号