首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A forced degradation study was successfully applied for the development of a stability-indicating assay method for determination of rosuvastatin Ca in the presence of its degradation products. The method was developed and optimized by analyzing the forcefully degraded samples. Degradation of the drug was done at various pH values. Moreover, the drug was degraded under oxidative, photolytic, and thermal stress conditions. Mass balance between assay values of degraded samples and generated impurities was found to be satisfactory. The proposed method was able to resolve all of the possible degradation products formed during the stress study. The developed method was successfully applied for an accelerated stability study of the tablet formulation. The major impurities generated during the accelerated stability study of the tablet formulation were matches with those of the forced degradation study. The developed method was validated for determination of rosuvastatin Ca, and the method was found to be equally applicable to study the impurities formed during routine and forced degradation of rosuvastatin Ca.  相似文献   

2.
In this study, the objective was to investigate the degradation behavior of Esomeprazole under different recommended stress conditions according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use [1] by HPLC. Our research showed that the effect of mobile phase species on separation was significant for the determination of Esomeprazole and its related compounds. Successful separation of the drug from its related impurities and degradation products formed under different stress conditions was achieved using ammonium acetate buffer/ACN by a gradient elution. Compared with phosphate buffer/ACN, ammonium acetate buffer/ACN under same pH and gradient showed a great improvement in resolution due to the change of elution order. The drug was subjected to stress conditions including acidic, alkaline, oxidative, photolytic, and thermal conditions. Extensive degradation occurred in acidic and oxidative conditions, while mild degradation was observed in alkaline and photolytic conditions. Besides, it turned out the drug was extremely stable under thermal condition. The stability‐indicating LC–UV method was validated with respect to linearity, precision, accuracy, specificity, and robustness. The LC–MS method was also adopted for the characterization of degradation products. Based on the m/z values and fragmentation patterns, the degradation pathway of the drug has been proposed.  相似文献   

3.
A novel stability-indicating high-performance liquid chromatographic (HPLC) method was developed and validated for assay and determination of impurities of emtricitabine in drug substance. Emtricitabine was found to be degraded under acidic, alkaline, and oxidative stress conditions and to be more labile under oxidative conditions. The drug proved to be stable to dry heat and photolytic degradation. Resolution of major and minor degradation impurities was achieved on an Intersil ODS-3V column utilizing 10 mM sodium phosphate buffer and methanol (85:15) as mobile phase. Detection was at 280 nm. Validation studies were performed as per ICH recommended conditions. The developed method was found to be linear, accurate, specific, selective, precise, and robust.  相似文献   

4.
The present paper describes the development of a stability indicating reversed phase column liquid chromatographic method for aripiprazole in the presence of its impurities and degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of aqueous hydrolysis, oxidative, photolytic and thermal stress degradation. The degradation of aripiprazole was observed under acid hydrolysis and peroxide. The drug was found to be stable to other stress conditions attempted. Successful separation of the drug from the synthetic impurities and degradation products formed under stress conditions was achieved on an Inertsil phenyl column using a mixture of 0.2% trifluoroacetic acid and acetonitrile (55:45, v/v). The developed LC method was validated with respect to linearity, accuracy, precision, specificity and robustness. The assay method was found linear in the range of 25–200 μg mL?1 with a correlation coefficient of 0.9999 and the linearity of the impurities were established from LOQ to 0.3%. Recoveries of the assay and impurities were found between 97.2 and 104.6%. The developed LC method for the related substances and assay determination of aripiprazole can be used to evaluate the quality of regular production samples. It can also be used to test the stability samples of aripiprazole. To the best of our knowledge, the validated stability indicating LC method which separates all the impurities disclosed in this investigation was not published elsewhere.  相似文献   

5.
A validated specific stability indicating reversed-phase high-performance liquid chromatography method was developed for the quantitative determination of Amsacrine as well as its related substances determination in bulk samples, in presence of degradation products, and its process related impurities. Forced degradation studies were performed on bulk samples of Amsacrine as per International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human use (ICH) prescribed stress conditions using acid, base, oxidative, thermal stress, and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during basic hydrolysis, slight degradation was observed in oxidative and thermal stress, and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process-related impurities and degradation products from the analyte were achieved on Inertsil ODS column using the mobile phase consists a mixture of 1.0% triethyl amine in 20 mM potassium dihydrogen orthophosphate, with pH adjusted to 6.5, with ortho phosphoric acid in water and acetonitrile using a simple linear gradient. The detection was carried out at wavelength 248 nm. The mass balance in each case was in between 99.4% to 99.9%, indicating that the developed method was stability-indicating. Validation of the developed method was carried out as per ICH requirements. The developed method was found to be suitable to check the quality of bulk samples of Amsacrine at the time of batch release and also during its stability studies.  相似文献   

6.
Rufinamide is used presently to treat Lenaux–Gastaut syndrome. A full factorial design and desirability approach was investigated for the optimization of hydrolytic stress via response surface curves (RSCs). The degradation impurities were identified and resolved using reversed-phase high-performance liquid chromatography (RP-HPLC) on the Qualisil® BDS C8 column. Acetonitrile–water (29:71, v/v) was optimized for the mobile phase and used at a flow rate of 1.0 ml/min with detection at a wavelength of 230 nm. Rufinamide showed appreciable susceptibility to hydrolysis under acidic and alkaline stress, and substantial degradation in the neutral condition. It degraded much less under oxidative stress. Exposure towards thermal and photolytic stress conditions indicated appreciable stability. The developed method was subjected to validation as per the recommendations of the International Conference on Harmonization. The proposed method showed no influence from the excipients and the degradation products. As well as good precision and accuracy in determination, the method showed a linear response between 2 and 12 μg ml−1. The method was extended for determination in a human plasma sample, which resulted in excellent recovery without interference from matrix effects. The combined use of desirability and design for the optimization of acidic and alkaline hydrolytic stress led to simple and rapid analysis.  相似文献   

7.
8.

A simple, selective, precise, rapid and accurate stability-indicating high-performance thin-layer chromatography (HPTLC) method was developed and validated for the estimation of dapagliflozin and metformin in tablet dosage form. In this work, methanol–ethyl acetate–ammonium acetate (6:4:0.1, V/V) as the mobile phase and aluminum-backed TLC plates pre-coated with 250 µm layer of silica gel 60F254 as the stationary phase were used for the estimation of dapagliflozin and metformin. The wavelength selected for detection was 220 nm. The linearity range was found to be 20–100 ng/spot (r2 = 0.9985) for dapagliflozin and 500–2500 ng/spot (r2 = 0.9984) for metformin. Validation of the developed method was performed as per the International Council for Harmonisation (ICH) guidelines. Stress testing of dapagliflozin and metformin was performed under acidic, alkaline, oxidative, photolytic and dry-heat degradation conditions. The chromatographic conditions successfully resolved dapagliflozin and metformin from their degradation products, formed under various stress conditions. From stress testing, dapagliflozin was found to be significantly degrading under acidic, alkaline, oxidative, photolytic and dry-heat degradation conditions, while metformin was found to be significantly degrading in acidic and alkaline degradation conditions and stable under oxidative, photolytic and dry-heat degradation conditions. Tablet dosage form of dapagliflozin and metformin was analyzed by the developed method.

  相似文献   

9.
A validated, specific, stability-indicating reversed-phase liquid chromatographic method has been developed for quantitative analysis of moxifloxacin and its related substances in bulk samples and pharmaceutical dosage forms in the presence of degradation products and process-related impurities. Forced degradation studies were performed on bulk samples of moxifloxacin, in accordance with ICH guidelines, using acidic, basic, and oxidizing conditions, and thermal and photolytic stress, to show the stability-indicating power of the method. Significant degradation was caused by oxidative stress and by basic conditions; no degradation was observed under the other stress conditions. The method was optimized by analysis of the samples generated during the forced degradation studies and sample solutions spiked with the impurities. Good resolution between the analyte peak and peaks corresponding to process-related impurities and degradation products was achieved on a C18 column with a simple linear mobile phase gradient prepared from aqueous sodium dihydrogen orthophosphate dihydrate containing triethylamine, pH adjusted to 3.0 with orthophosphoric acid, and methanol. Detection was performed at 240 nm. Limits of detection and quantification were established for moxifloxacin and its process related impurities. When the stressed test solutions were assayed against moxifloxacin working standard solution the mass balance was always between 99.3 and 100.1%, indicating the method was stability-indicating. The method was validated in accordance with ICH guidelines, and found to be suitable for checking the quality of bulk samples of moxifloxacin at the time of release of a batch and during storage (long term and accelerated stability testing was conducted).  相似文献   

10.
A simple and rapid reversed-phase liquid chromatographic method was developed for the related substances determination and quantitative evaluation of ziprasidone hydrochloride, which is used as an antipsychotic agent. Forced degradation studies were performed on bulk sample of ziprasidone hydrochloride using acid, base, oxidative hydrolysis, thermal stress and photolytic degradation. Mild degradation of the drug substance was observed during thermal stress and considerable degradation observed during base hydrolysis. The chromatographic method was fine tuned using the samples generated from forced degradation studies. Good resolution between the peaks corresponds to synthetic impurities and degradation products from the analyte were achieved on YMC Pack Pro C18 column using the mobile phase consists of a mixture of 0.05% v/v of phosphoric acid in water and acetonitrile. The stressed test solutions were assayed against the qualified working standard of ziprasidone hydrochloride and the mass balance in each case was close to 99.7% indicating that the developed method was stability-indicating. Validation of the developed method was carried out as per ICH requirements.  相似文献   

11.
Gliquidone (GQ) is an oral hypoglycemic agent, belonging to second‐generation sulfonylurea derivatives. New high‐performance thin‐layer chromatography (HPTLC) and ultra‐performance liquid chromatography (UPLC) methods have been developed and validated and used for complete stability study of GQ following International Conference on Harmonization guidelines. GQ was subjected to stress and forced degradation under hydrolytic, oxidative and photolytic conditions. The drug was found to be unstable under acidic, alkaline and oxidative conditions with the formation of gliquidone sulfonamide (GQS), while a marked stability was confirmed under thermal and photolytic stress conditions. GQS is the British pharmacopeial impurity A of GQ and also considered as its synthesis intermediate. The developed chromatographic methods have been utilized for anticipating the degradation behavior of GQ under the studied conditions and then used for quantitation of GQ and GQS either in their pure forms or in laboratory prepared mixtures. The methods were successfully applied to GQ in pharmaceutical formulation. The methods have the advantages of being sensitive and less time consuming compared with the reported methods. The obtained results were statistically compared with a reported HPLC method showing no significant difference regarding both accuracy and precision.  相似文献   

12.
A validated, specific, stability-indicating reversed-phase liquid chromatographic method has been developed for quantitative analysis of gatifloxacin, its degradation products, and its process-related impurities in bulk samples and in pharmaceutical dosage forms. Forced degradation of gatifloxacin bulk sample was conducted in accordance with ICH guidelines. Acidic, basic, neutral, and oxidative hydrolysis, thermal stress, and photolytic degradation were used to assess the stability-indicating power of the method. Substantial degradation was observed during oxidative hydrolysis. No degradation was observed under the other stress conditions. The method was optimized using samples generated by forced degradation and sample solution spiked with impurities. Good resolution of the analyte peak from peaks corresponding to process-related impurities and degradation products was achieved on a C18 column by use of a simple linear mobile-phase gradient prepared from mixtures of acetonitrile and an aqueous solution of sodium dihydrogen orthophosphate dihydrate and triethylamine adjusted to pH 6.5 with orthophosphoric acid. Detection was performed at 240 nm. Limits of detection and quantification were established for gatifloxacin and its process-related impurities. When the stressed test solutions were assayed by comparison with gatifloxacin working standard the mass balance was always close to 99.3%, indicating the method was stability-indicating. Validation of the method was performed in accordance with ICH requirements. The method was found to be suitable for checking the quality of bulk samples of gatifloxacin at the time of batch release and also during storage.  相似文献   

13.
The aim of this study was to study the stress degradation of granisetron and analysis of the drug in the presence of its degradation products. Forced degradation studies were conducted on bulk sample using acidic, alkaline, oxidative, heat and photolytic conditions. Granisetron was relatively unstable under acidic, alkaline and oxidative conditions. Separation of granisetron and degradation products was achieved using a Nova‐Pak C8 column and acetonitrile‐KH2PO4 25 mM (75:25, v/v) as mobile phase with UV detection at 305 nm. The method was linear over the range of 0.2‐15 μg/mL granisetron (r2 > 0.999). The within‐day and between‐day precision values were also in the range of 0.5‐4%. The proposed method was successfully applied for quantitative determination of granisetron in tablets and in vitro dissolution studies.  相似文献   

14.

Brinzolamide (BZA) is a topical ophthalmic drug which is generally used to lower the intraocular pressure during glaucoma. It was subjected to forced degradation studies under hydrolytic (acidic, basic), oxidative, photolytic and thermal stress conditions; the drug degraded significantly in hydrolytic and oxidative conditions, leading to the formation of seven degradation products in total. It was stable on exposure to light and dry heat in the solid state. An ultra-performance liquid chromatography (UPLC) method was developed on a Waters CSH phenyl hexyl column (100 × 2.1 mm, 1.7 µm), using gradient elution of 0.1 % formic acid and methanol as mobile phase. The method was extended to quadrupole time-of-flight mass spectrometry (Q-TOF–MS) for the structural characterisation. All degradation products were comprehensively characterised by UHPLC–ESI/MS/MS experiments. The most probable mechanisms for the formation of degradation products were also proposed. In silico toxicity of the drug and its degradation products was determined using TOPKAT toxicity prediction software.

  相似文献   

15.
A novel, stability-indicating gradient reverse-phase ultra-performance liquid chromatographic method was developed for the simultaneous determination of ibuprofen and diphenhydramine citrate in the presence of degradation products and process related impurities in combined dosage form. The method was developed using C18 column with mobile phase containing a gradient mixture of solvent A and B. The eluted compounds were monitored at 220 nm. Ibuprofen and diphenhydramine citrate were subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Major unknown impurity formed under oxidative degradation was identified using LC-MS-MS study. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantitation, accuracy, precision and robustness. The described method was linear over the range of 0.20-6.00 μg/mL (r>0.998) for Ibuprofen and 0.084-1.14 μg/mL for diphenhydramine citrate (r>0.998). The limit of detection results were ranged from 0.200-0.320 μg/mL for ibuprofen impurities and 0.084-0.099 μg/mL for diphenhydramine citrate impurities. The limit of quantitation results were ranged from 0.440 to 0.880 μg/mL for ibuprofen impurities and 0.258 to 0.372 μg/mL for diphenhydramine citrate impurities. The recovery of ibuprofen impurities were ranged from 98.1% to 100.5% and the recovery of diphenhydramine citrate impurities were ranged from 97.5% to 102.1%. This method is also suitable for the simultaneous assay determination of ibuprofen and diphenhydramine citrate in pharmaceutical dosage forms.  相似文献   

16.
Ondansetron hydrochloride was subjected to forced degradation studies under various conditions of hydrolysis (acidic, basic, and neutral), oxidation, photolysis, and thermal as prescribed by International Conference on Harmonisation guideline Q1A (R2). A simple, selective, precise, and accurate high‐performance liquid chromatography method was developed on a Waters Xterra C18 (150 × 4.6 mm id, 3.5 μm) column using 10 mM ammonium formate (pH 3.0)/methanol as a mobile phase in gradient elution mode at a flow rate of 0.6 mL/min. The method was extended to liquid chromatography quadrupole time‐of‐flight tandem mass spectrometry for identification and structural characterization of stress degradation products of ondansetron. The drug showed significant degradation in base hydrolytic and photolytic stress conditions in the liquid state, while it was found to be stable in neutral, acidic, thermal, and oxidative stress conditions. A total of five degradation products were characterized and most probable mechanisms for the formation of degradation products have been proposed on the basis of a comparison of the fragmentation of the [M + H]+ ions of the drug and its degradation products. Finally, the developed method was validated in terms of specificity, linearity, accuracy, precision, and robustness as per International Conference on Harmonisation guideline Q2 (R1).  相似文献   

17.
A simple reverse phase liquid chromatographic method was developed for the quantitative determination of desipramine hydrochloride and its related impurities in bulk drugs which is also stability-indicating. During the forced degradation at hydrolysis, oxidative, photolytic and thermal stressed conditions, the degradation results were only observed in the oxidative stress condition. The blend of the degradation product and potential impurities were used to optimize the method by an YMC Pack Pro C18 stationary phase. The LC method employs a linear gradient elution with the water–acetonitrile–trifluoroacetic acid as mobile phase. The flow rate was 1.0 mL min?1 and the detection wavelength 215 nm. The stressed samples were quantified against a qualified reference standard and the mass balance was found close to 99.0% (w/w) when the response of the degradant was considered to be equal to the analyte (i.e. desipramine). The developed RP-LC method was validated in agreement with ICH requirements.  相似文献   

18.
An isocratic reversed-phase liquid chromatographic method has been developed for quantitative determination of candesartan cilexetil, used to treat hypertension, in the bulk drug and in pharmaceutical dosage forms. The method is also applicable to analysis of related substances. Chromatographic separation was achieved on a 250 mm × 4.6 mm, 5 μm particle, CN column with a 50:50 (v/v) mixture of phosphate buffer, pH 3.0, and acetonitrile as mobile phase. The flow rate was 1.0 mL min−1 and the detection wavelength was 210 nm. Resolution of candesartan cilexetil and six potential impurities was greater than 2.0 for all pairs of compounds. The drug was subjected to hydrolytic, oxidative, photolytic, and thermal stress and substantial degradation occurred in alkaline and acidic media and under oxidative and hydrolytic stress conditions. The major product obtained as a result of basic hydrolysis was different from that produced by acid hydrolysis and aqueous hydrolysis. The stress samples were assayed against a reference standard and the mass balance was found to be close to 99.6%. The method was validated for linearity, accuracy, precision, and robustness.  相似文献   

19.

A simple reverse phase liquid chromatographic method was developed for the quantitative determination of desipramine hydrochloride and its related impurities in bulk drugs which is also stability-indicating. During the forced degradation at hydrolysis, oxidative, photolytic and thermal stressed conditions, the degradation results were only observed in the oxidative stress condition. The blend of the degradation product and potential impurities were used to optimize the method by an YMC Pack Pro C18 stationary phase. The LC method employs a linear gradient elution with the water–acetonitrile–trifluoroacetic acid as mobile phase. The flow rate was 1.0 mL min−1 and the detection wavelength 215 nm. The stressed samples were quantified against a qualified reference standard and the mass balance was found close to 99.0% (w/w) when the response of the degradant was considered to be equal to the analyte (i.e. desipramine). The developed RP-LC method was validated in agreement with ICH requirements.

  相似文献   

20.
A simple RP-ultra-performance LC method was developed and validated for determination of impurities related to torsemide tablets. The rapid method provided adequate separation of all known related impurities and degradation products. Separation was achieved on a Zorbax SB-C18 column (50 x 4.6 mm id, 1.8 microm particle size) with binary gradient elution, and detection was performed at 288 nm. The drug product was subjected to oxidative, hydrolytic, photolytic, and thermal stress conditions to prove the specificity of the proposed method. The linearity and recovery were investigated for known impurities in the range of 0.025 to 1.0%, with respect to the drug concentration in the prepared sample. The linearity of the calibration curve for each of the impurities and torsemide was found to be very good (r2 > 0.999). Relative response factors for each of the known impurities were established by the slope ratio method from the linearity study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号