首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The mobilities of the monocharged permanent tertraphenylphosphonium cation and tetraphenylborate anion are determined by capillary zone electrophoresis in different organic solvents as a function of the ionic strength, I, of the background electrolyte. The nonaqueous solvents are propylene carbonate (PC), N,N-dimethylformamide (DMF), N,N,-dimethylacetamide (DMA), acetonitrile (MeCN) and methanol (MeOH). The ionic strength is between 5 and 50 mmol/L. The mobility as a function of I is in good agreement with the theory of Debye, Hückel and Onsager (DHO), extended by the ion size parameter as introduced by Falkenhagen and Pitts. The values of the limiting DHO slopes of the mobility vs. I curves (the slopes express the influence of the solvent on the reduction of the mobility with increase of I) decrease in the order MeCN > MeOH > DMF > DMA > PC. Absolute mobilities (obtained by extrapolation to I = 0) of a particular ion differ by a factor of about 7 between the solvents. However, constancy within 10% is observed for their Walden products (the absolute mobility multiplied with the solvent's macroviscosity). The role of dielectric friction on the mobility of the present monocharged, large analyte ions is discussed according to the theory of Hubbard and Onsager. Based on the radii of the ions, the static permittivity of the solvent and its permittivity at infinite frequency, and the relaxation time of polarization, an equal contribution of dielectric and hydrodynamic friction is predicted in MeOH as solvent. Experimental data are in contrast to this prediction, indicating the overestimation of dielectric friction, and the dominance of hydrodynamic friction on the migration of the analyte ions in all solvents under consideration.  相似文献   

2.
Boraei A  Mohamed N 《Annali di chimica》2002,92(5-6):575-585
The deprotonation and acid ionization constants of some triazole derivatives in various aqueous-organic solvent mixtures were determined potentiometrically at 20 degrees C. The organic solvents used were methanol, ethanol, DMF, DMSO, acetonitrile, acetone and dioxane. The high stabilization of both the non-protonated form by dispersion forces and of the proton by its interaction with the organic solvent are the main factors influencing the deprotonation constant in aqueous mixtures of methanol, ethanol, DMF or DMSO. On the other hand, the hydrogen bonding interactions and the solvent basicity, in addition to the electrostatic effect, contribute to the major effects in the deprotonation process (in solutions enriched with acetonitrile, acetone or dioxane) and the acid ionization process in different aqueous-organic solvent mixtures. Some thermodynamic parameters (delta H, delta G, delta S) of the ionization processes in a pure aqueous medium are also determined and discussed.  相似文献   

3.
The acid ionization constants of some pyrimidine bases of nucleic acids were determined pH-metrically at 25 degrees C and at the constant ionic strength I = 0.10 mol l(-1) (KNO3) in pure water as well as in aqueous media containing variable mole percentages (5-30%) of organic solvents. The organic solvents used were methanol, ethanol, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetonitrile, acetone and dioxane. The results obtained indicated that the acidity constants are generally decreased as the content of an organic solvent in the medium is increased. It was deduced that the hydrogen bonding interactions and the solvent basicity in addition to the electrostatic effect are the major effects influencing significantly the acid ionization process of pyrimidine bases in the different water-organic solvent media. Some thermodynamic parameters (deltaH, deltaG degrees, deltaS degrees) of the ionization process over the temperature range 5-45 degrees C in pure water were also determined and discussed.  相似文献   

4.
Individual solvation numbers around the nickel(II) ion have been determined by titration Raman spectroscopy in N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) mixtures at 298 K. The in-plane bending vibration (delta(O=C-N)) of DMF and the stretching vibration (v(N-CH3)) of DMA were used in the present analysis. These Raman bands of solvent molecules shift to higher frequencies upon coordination of the solvent molecules to the metal ion. By analyzing the band intensities of free and bound solvent molecules with increasing concentration of the metal ion, the solvation number around the metal ion can be evaluated. Because the individual solvation numbers of DMF and DMA around the nickel(II) ion in the mixture are determined independently, the total solvation number is obtained as their sum. It was found that the total solvation number remains 6 in all mixtures of the DMA mole fraction x = 0 - 1. Although DMF and DMA have practically the same electron-pair donor capacities, the nickel(II) ion prefers DMF to DMA, and an equal solvation number is attained at x = 0.75. This is ascribed to the solvation steric effect of DMA.  相似文献   

5.
Although the establishment of a pH scale and the determination of the pH in water is not problematic, it is not a straightforward task in non-aqueous solvents. As capillary zone electrophoresis (CZE) in organic solvents has gained increasing interest, it seems to be valuable to re-discuss the concept of the pH in such media, especially pointing to those aspects, which make pH measurement uncertain in non-aqueous solvents. In this review, the relevant aspects when dealing with primary standard (PS) and secondary standard (SS) as recommended by the International Union of Pure and Applied Chemistry (IUPAC), and the usage of the operational pH are discussed with special emphasis to non-aqueous solvents. Here, different liquid junction potentials, incomplete dissociation of the electrolytes (especially in solvents with low or moderate relative permittivity) and the occurrence of homo- and heteroconjugation must be taken into account. Problems arising in capillary zone electrophoresis practice are addressed, e.g. when the background electrolyte (BGE) consists of organic solvents, but the measuring electrode (normally the glass electrode) is calibrated with aqueous buffers, and the liquid junction potentials between the solvents do not cancel each other. The alternative concept of establishing a certain pH is described, using mixtures of reference acids or bases with known pKa in the organic solvent, and their respective salts, at a certain concentration ratio, relying to the Henderson-Hasselbalch equation. Special discussion is directed to those organic solvents most common in capillary zone electrophoresis, methanol (MeOH) and acetonitrile (ACN), but other solvents are included as well. The potential significance of small amounts of water present in the organic solvent on changes in pKa values, and thus on the pH of the buffering components is pointed out.  相似文献   

6.
The work summarized here demonstrates a new concept for exploiting dense phase CO(2), media considered to be "green" solvents, for homogeneous catalytic oxidation reactions. According to this concept, the conventional organic solvent medium used in catalytic chemical reactions is replaced substantially (up to 80 vol %) by CO(2), at moderate pressures (tens of bars), to create a continuum of CO(2)-expanded solvent media. A particular benefit is found for oxidation catalysis; the presence of CO(2) in the mixed medium increases the O(2) solubility by ca. 100 times compared to that in the neat organic solvent while the retained organic solvent serves an essential role by solubilizing the transition metal catalyst. We show that CO(2)-expanded solvents provide optimal properties for maximizing oxidation rates that are typically 1-2 orders of magnitude greater than those obtained with either the neat organic solvent or supercritical CO(2) as the reaction medium. These advantages are demonstrated with examples of homogeneous oxidations of a substituted phenol and of cyclohexene by molecular O(2) using transition metal catalysts, cobalt Schiff-base and iron porphyrin complexes, respectively, in CO(2)-expanded CH(3)CN.  相似文献   

7.
Thermal effects of aniline solution in water-N,N-dimethylformamide (DMF) and water-acetonitrile mixtures were measured at 25°C. In almost the whole range of compositions of the mixed solvents, the thermal effects are more positive in aqueous acetonitrile than in aqueous DMF. Particular attention was given to binary solvents with a very low content of the organic cosolvent. In the mixture with the mole fraction of DMF of 10- 3, the enthalpy of aniline solution is higher than in water by 5%, and in the mixture with the mole fraction of acetonitrile of 4 × 10- 4, even by 15%. Features of specific solvation of aniline and an aliphatic amine (n-BuNH2) in the water-DMF mixture were discussed taking into account the acid-base properties of the mixtures. The coefficients of pair interactions aniline-organic solvent in water and aniline-water in the organic solvent were calculated using the McMillan-Mayer theory. These coefficients correlate with the enthalpies of hydration of aprotic solvent molecules.  相似文献   

8.
The acidity constants of Alizarine Red S were determined spectrophotometrically at 25 degrees C and at constant ionic strength 0.1 M (KNO3) in pure water as well as in aqueous media containing variable mole percentages (5-70%) of organic solvents. The organic solvents used were methanol, ethanol, N,N-dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), acetonitrile and dioxan. The acidity constants of all related equilibria are estimated using the whole spectral fitting of the collected data to an established factor analysis model. DATAN program was applied for determining of acidity constants and pure spectra of different form of Alizarine Red S. The obtained results indicated that acidity constants decrease as the content of an organic solvent in the medium increases. There are linear relationship between acidity constants and the mole fraction of various organic solvents in the solvent mixtures. Effect of various solvents on acidity constants and pure spectrum of each component are also discussed.  相似文献   

9.
The acid dissociation constants of the protonated form of some azine compounds (acridine, acridine orange and neutral red, BH+) were determined pH-metrically at 25 degrees C and at the constant ionic strength I = 0.1 mol l(-1) (KNO3) in pure water as well as in various aqueous mixtures having different proportions (w/w%) of organic solvents. The organic solvents used are methanol, ethanol (as amphiprotic solvents), N,N-dimethylformamide, dimethylsulfoxide (as dipolar aprotic solvents) and acetonitrile (as a low basic solvent). The results obtained indicated that the pKa values decrease as the content of the organic solvent in the medium is increased. It is deduced that, the major effect responsible for this behaviour is the differences in stabilization of the free base (B) by dispersion forces and of the proton by its interaction with solvent and water molecules in aqueous-organic solvent mixtures (ion-solvent interaction). Moreover, it is concluded that the ability of the solvent to accept hydrogen bond from the protonated form (BH+) contributes significantly to the deprotonation process of the compounds.  相似文献   

10.
The thermodynamic properties of phenacetin in solid state and in saturated conditions in neat and binary solvents were characterized based on differential scanning calorimetry and spectroscopic solubility measurements. The temperature-related heat capacity values measured for both the solid and melt states were provided and used for precise determination of the values for ideal solubility, fusion thermodynamic functions, and activity coefficients in the studied solutions. Factors affecting the accuracy of these values were discussed in terms of various models of specific heat capacity difference for phenacetin in crystal and super-cooled liquid states. It was concluded that different properties have varying sensitivity in relation to the accuracy of heat capacity values. The values of temperature-related excess solubility in aqueous binary mixtures were interpreted using the Jouyban–Acree solubility equation for aqueous binary mixtures of methanol, DMSO, DMF, 1,4-dioxane, and acetonitrile. All binary solvent systems studied exhibited strong positive non-ideal deviations from an algebraic rule of mixing. Additionally, an interesting co-solvency phenomenon was observed with phenacetin solubility in aqueous mixtures with acetonitrile or 1,4-dioxane. The remaining three solvents acted as strong co-solvents.  相似文献   

11.
Azab HA  El-Nady AM  El-Shatoury SA  Hassan A 《Talanta》1994,41(8):1255-1259
The dissociation constant values of L-histidine, proline and tryptophane were determined at 25 +/- 0.1 degrees C by potentiometric pH titration in pure water and different hydroorganic solvent media. The organic solvents used were methanol, ethanol, N,N-dimethylformamide, dimethyl sulfoxide, acetone and dioxane. Initial estimates of the dissociation constant values of the different amino acids studied have been refined with ESAP2M computer program. It was observed that changing the medium permittivity as the solvent is enriched in methanol or ethanol has little influence on the pK*(a) values of the amino acids studied. The results obtained are discussed in terms of average macroscopic properties of the mixed solvents and the possible variation in microheterogeneity of the salvation shells around the solute.  相似文献   

12.
pKa values in non-aqueous solvents are of critical importance in many areas of chemistry. Our knowledge is, despite their relevance, still limited to the most fundamental properties and few pKa values in the most common solvents. Taking advantage of a recently introduced computationally efficient procedure we computed the pKa values of 182 compounds in 21 solvents. This data set is used to establish for the first time universal trends between all solvents. Our computations indicate, that the total charge of the molecule and the charge of the acidic group combined with the Kamlet-Taft solvatochromic parameters are sufficient to predict pKa values with at least semi- quantitative accuracy. We find, that neutral acids such as alcohols are strongly affected by the solvent properties. This is contrasted by cationic acids like ammonium ions whose pKa is often almost completely independent from the choice of solvent.  相似文献   

13.
In many cases salts, which are liquid at room temperature show a better solubility in organic solvents, and can be used in nonaqueous capillary zone electrophoresis as ionic additives. In this study 1-alkyl-3-methylimidasolium-based ionic liquids were used as additives in separation media to assess the interactions between the analytes and the ionic additive present and to find an influence of the type and concentration of the ionic additive, also the nature of the nonaqueous medium employed. Different organic solvents (acetonitrile and methanol) contribute differently to the conversion of analytes into a charged form. Complexes with either an anionic or a cationic part of the ionic liquid additive were formed. This was the case for electrophoresis separation of Br?nsted acids and polyphenolic compounds.  相似文献   

14.
Non-aqueous capillary electrophoresis (NACE) may provide a selectivity enhancement in separations since the analyte dissociation constants (pKa) in organic media are different from those in aqueous solutions. In this work, we have studied the inversion in mobility order observed in the separation of tertiary (imipramine (IMI) and amitryptiline (AMI)) and secondary amines (desipramine (DES) and nortryptiline (NOR)) in water, methanol, and acetonitrile. We have determined the pKa values in those solvents and the variation of dissociation constants with the temperature. From these data, and applying the Van't Hoff equation, we have calculated the thermodynamic parameters deltaH and deltaS. The pKa values found in methanol for DES, NOR, IMI, and AMI were 10.80, 10.79, 10.38, and 10.33, respectively. On the other hand, in acetonitrile an opposite relation was found since the values were 20.60, 20.67, 20.74, and 20.81 for DES, NOR, IMI, and AMI. This is the reason why a migration order inversion is observed in NACE for these solvents. The thermodynamic parameters were evaluated and presented a tendency that can be correlated with that observed for pKa values.  相似文献   

15.
Porras SP  Kenndler E 《Electrophoresis》2005,26(17):3279-3291
N,N-Dimethylformamide (DMF) is a dipolar protophilic solvent with physicochemical properties that makes it suitable as solvent for capillary electrophoresis (CE). It is prerequisite for the proper application of CE to adjust and to change the pH of the background electrolyte (BGE) in a defined manner. This was done in the present work using benzoic acid-benzoate by selecting different concentration ratios of acid and salt, and calculating the theoretical pH from the activity-corrected Henderson-Hasselbalch equation. The mobilities of the analytes (chloro- and nitro-substituted phenolates) were found to follow reasonably well the typical sigmoid mobility versus pH curve as predicted by theory. The actual mobilities and pK(a) values (at 25 degrees C) of the analytes were derived from these curves. pK(a) values were in the range of 11.1-11.7, being thus 3-4.4 units higher than in water. This pK(a) shift is caused by the destabilization of the analyte anion and the better stability (solubility) of the molecular analyte acid in DMF, which overcome the higher basicity of DMF compared to water. Absolute mobilities were calculated from the actual mobilities; they were between 32x10(-9) and 42x10(-9) m(2)/Vxs. Slight deviations of the measured mobilities from the theoretical mobility versus pH curve were discussed on the bases of ion pairing and heteroconjugation and homoconjugation of either buffer components or buffer components and analytes. Heteroconjugation was used as a mechanism for the electrically driven separation of neutral analyte molecules in a BGE where salicylate acted as complex forming ion. Rough estimation of the complexation constants for the phenolic analytes gave values in the range of 100-200 L/mol. Addition of water to the solvent decreased the effect of heteroconjugation, but it was still present up to the surprisingly high concentration of 20% water. Electrophoretically relevant parameters like ionic mobilities and pK(a) values, and conjugation and ion pairing are dependent on the water content of the solvent. The water uptake of DMF was measured when exposed to humidity of ambient air. The resulted behavior of the water uptake was found rather similar to that for acetonitrile and methanol.  相似文献   

16.
Partition coefficients P of the HNCS, HNCO and HN3 hydropseudohalic acids between a number of organic solvents and water were determined. It has been found that log P increases with pKa of the acid and with the basicity of the solvent, but the effect of pKa on P is the smaller the more basic is the solvent. The relationships have been explained in terms of hydrogen bond formation between undissociated acid and solvent molecules. H-bonding between the pseudohalic acids and organic solvents has been confirmed by IR spectra on the example of HN3 in benzene. Association constants for H-bonding between the three acids and water, benzene, dibutyl ether and tri-n-butyl phosphate were determined from partition data. It has been found that H-bonding increases with the strength of the acid, whereas the contribution to partition from non-specific interactions with water and organic solvents depends on the molecular surface area of the acid molecule.  相似文献   

17.
周利  刘春丽  王文  林瑞森 《化学通报》2014,77(10):1017-1020
用Anton Paar型55精密数字密度计测定了甘氨酸在N,N-二甲基甲酰胺(DMF)水溶液中的密度,计算了甘氨酸的表观摩尔体积、极限偏摩尔体积、迁移偏摩尔体积和理论水化数,讨论了DMF的结构对甘氨酸迁移偏摩尔体积和理论水化数的影响。结果表明,甘氨酸在DMF水溶液中的迁移偏摩尔体积为正值,并且随着溶液浓度增大而增大。在DMF水溶液中的理论水化数比在纯水中的小,并且随着DMF浓度的增大而减小。把上述计算结果与在N,N-二甲基乙酰胺(DMA)水溶液中的实验结果进行了比较。  相似文献   

18.
IntroductionTherehasbeenanincreasedinterestinthethermodynamicbehaviorofternarymixtures(water+nonaqueoussolvent+electrolyte)[1].However,therehasbeenashortageofinvestigationsonsuchmixtures,especiallyonaromaticsolutesthatcontainthesubstituent.Littleiskn…  相似文献   

19.
New protocol for screening efficient and environmentally friendly solvents was proposed and experimentally verified. The guidance for solvent selection comes from computed solubility via COSMO-RS approach. Furthermore, solute-solvent affinities computed using advanced quantum chemistry level were used as a rationale for observed solvents ranking. The screening protocol pointed out that 4-formylomorpholine (4FM) is an attractive solubilizer compared to commonly used aprotic solvents such as DMSO and DMF. This was tested experimentally by measuring the solubility of the title compounds in aqueous binary mixtures in the temperature range between 298.15 K and 313.15 K. Additional measurements were also performed for aqueous binary mixtures of DMSO and DMF. It has been found that the solubility of studied aromatic amides is very high and quite similar in all three aprotic solvents. For most aqueous binary mixtures, a significant decrease in solubility with a decrease in the organic fraction is observed, indicating that all systems can be regarded as efficient solvent-anti-solvent pairs. In the case of salicylamide dissolved in aqueous-4FM binary mixtures, a strong synergistic effect has been found leading to the highest solubility for 0.6 mole fraction of 4-FM.  相似文献   

20.
The solubility of N,N′-Bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine in seven pure solvents (acetonitrile, acetone, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and isobutyl acetate) and two binary solvent mixtures (acetone?+?acetonitrile and methyl acetate?+?acetonitrile) were measured from 273.15 to 303.15 K at atmospheric pressure by a dynamic method. The solubility data in these pure solvents were correlated by the modified Apelblat model, the Wilson model and the NRTL model, and that in the binary solvents mixture were fitted to the CNIBS/R–K model and the NRTL model. Furthermore, the mixing thermodynamic properties in pure and binary solvent systems were calculated and are discussed, based on the NRTL model. Finally, the applicability of the model of Zhang et al. (Ind Eng Chem Res 51:6933–6938, 2012) in correlating solubility data versus dielectric constant was extended from organic solvent–water mixtures to pure organic solvents and nonaqueous organic solvent mixtures. It was found that the dissolution behavior of a compound in the binary solvent mixtures can be predicted to some extent from those in pure solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号