首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of intumescence is studied in mixtures of ammonium polyphosphate (APP) with several polycondensates as a part of a systematic study of intumescent fire retardants. It is shown that APP reacts on heating with the polycondensate to form a precursor of the intumescent char which is obtained on further heating. The introduction of the intumescent system in polypropylene does not modify the structure of the char formed on heating. However, the polymer modifies the foaming behaviour of the system. The thermal decomposition of the char occurs with volatilisation of phosphorus moieties and formation of a relatively thermally stable residue. Effects of the thermal behaviour of the char, on fire retardance, are discussed.  相似文献   

2.
Reducing the fire hazard of polypropylene (PP) is an important research direction in the fields of fire safety materials. In this article, a novel Ni‐containing char‐forming agent (TTPN) was successfully synthesized, using tris(2‐hydroxyethyl) isocyanurate (THEIC), terephthalic acid, and nickel dihydrogen phosphate. Then, TTPN was combined with the silica‐gel microencapsulated ammonium polyphosphate (OS‐MCAPP) to prepare intumescent flame retardant PP composites. From the results of the limiting oxygen index (LOI) test and cone calorimeter, the composite containing 30% IFR (OS‐MCAPP: TTPN = 3:2) shows the highest LOI value of 33.5%, and its peak heat release rate is 275.5 kWm?2, decreased by 79.0% and 37.4% than those of pure PP and the composite containing the char‐forming agent without Ni. Meanwhile, the composite containing TTPN present the best smoke and CO2/CO suppression. The results indicate that TTPN has an excellent ability to dramatically reduce the fire hazard of PP.  相似文献   

3.
Rigid polyurethane (PU) foams were successfully filled with different weight ratios of melamine (1 wt%, 5 wt%, 10 wt%), silica (0.1 wt%) and ionic liquid, 1-Ethyl-3-methylimidazolium chloride, [EMIM]Cl (0.3 wt%). The aim of this study was to improve the flame retardancy of PU foams and to develop the synergistic effect between melamine, silica and ionic liquid on the flame-retardant PU foams. The influence of different loadings of the fillers was examined. The results showed that in comparison with unfilled foam, all modified compositions are characterized by higher density (41–46 kg m−3), greater compression strength (134–148 kPa), and comparable thermal conductivity (0.023–0.026 W m−1 K−1). Moreover, the reaction to fire of the PU composites has been investigated by the cone calorimeter test. The results showed that the fire resistance of PU foams containing as little as 1 wt% of melamine is significantly improved. For example, the results from the cone calorimeter test showed that the incorporation of the melamine, silica and ionic liquid significantly reduced the peak of heat release rate (pHRR) by ca. 84% compared with that of unmodified PU foam. SEM results showed that incorporated fillers can form an intumescent char layer during combustion which improves the reaction to fire of the composite foams.  相似文献   

4.
At present, thermoplastic polyurethane (TPU) is widely used, but there are still many defects in fire safety, such as burning with heavy smoke and dripping. In this article, OS@MP was synthesized by modifying oyster shell (OS) powder with melamine polyphosphate (MP) and then served as fire‐safe agent for TPU. The fire performance of TPU composites were investigated using microscale combustion colorimeter (MCC), cone calorimeter test (CCT), smoke density test (SDT), and thermogravimetric analysis/Fourier transform infrared (TG‐FTIR) spectrum analysis. The MCC and CCT results revealed that OS@MP could reduce the fire hazards of TPU composites. The peak heat release rate (pHRR) of the sample with 10.0 wt% OS@MP decreased to 170.86 kW/m2 from 1772.37 kW/m2 for pure TPU. And, the SDT results showed that OS@MP could significantly reduce the smoke production of TPU composites. The TG‐FTIR also confirmed that the noncombustible gases (including CO2, ammonia, and water vapor) produced by OS@MP have played a reinforcing role in TPU composites as well as a char formed on the surface of composites, which could act as a barrier to prevent the heat and air, reinforce the fire safety of TPU.  相似文献   

5.
The morphology, thermal degradation, and flame retardancy of epoxy (EP) composites containing microcrystalline cellulose whisker (MCW) and microencapsulated ammonium polyphosphate (MFAPP) were investigated using optical microscopy, limiting oxygen index (LOI), UL-94, thermogravimetry (TG), microscale combustion calorimeter, and TG-FTIR. EP/MFAPP/MCW composites can pass V-0 in UL-94 test at 6 wt% loading, and its peak heat release rate decreases when compared with EP and EP/MFAPP. The reason is that the presence of MCW strengthens the charring capacity of EP composites in a fire. The results of TG and TG-FTIR show that at low temperature, MFAPP stimulates the dehydration of MCW and EP, and produces gas which is helpful for the formation of an intumescent char. Moreover, the residue at high temperature does not release any flammable gas and is a good insulation layer on the surface of the sample, which protects the underlying material in a fire.  相似文献   

6.
In this article, oyster shell powder (OSP) was used as fire safety agent with ammonium polyphosphate (APP) in thermoplastic polyurethane (TPU) composites. The synergistic fire safety improvement between OSP and APP was intensively investigated using limiting oxygen index (LOI), UL‐94, smoke density test (SDT), and cone calorimeter test (CCT). There is a good synergistic effect of reducing the fire hazards when OSP was used with APP in TPU. The peak heat release rate (pHRR) of the sample with 2.0‐wt% OSP and 8.0‐wt% APP decreased to 86.8 kW/m2 from 175.7 kW/m2 of the sample with only 10.0‐wt% APP. The SDT results showed that the luminous flux of sample OSP2/APP8 was up to 28.9% at the end of experiment with flame, which was much higher than that of pure TPU (1.5%). The thermal stability and thermal decomposition of TPU composites were characterized by thermogravimetric analysis/Fourier infrared spectrum analysis (TG‐IR). The result revealed the inert gasses (including CO2 and water vapor) produced by the reaction between OSP and APP. A char formed on the surface of composites, hindered the flame spread, reduced the release of combustible gas, and restricted the precursor of smoke into combustion zone.  相似文献   

7.
This work aims to evaluate the efficiency of halloysite as synergistic agent in an intumescent PP system based on a coated ammonium polyphosphate (IFR). The first part of the study analyses the thermal stability and fire performance of PP when using the intumescent formulation alone or in combination with the aluminosilicate nanotubes (HNTs). Cone calorimetry reveals that partial substitution of IFR by HNTs (3 wt.%) imparts substantial improvement in flame retardancy with reduced heat release rate and longer burning times. Additionally, a shift from V-1 to V-0 classification is achieved at the UL-94 test with only 1.5 wt.% HNTs. The second part provides a better understanding of the physical and chemical mechanisms of action of HNTs in the intumescent systems. The chemical evolution of the condensed phase during combustion is described by solid state NMR, and in particular using 2D NMR. Results indicate that halloysite speeds up the development of the intumescent shield, but also enhances its mechanical properties by physical reinforcement (i.e. aluminosilicate “skeleton-frame” for the phospho-carbonaceous structure) and/or by chemical interactions with IFR yielding to aluminophosphates. These new chemical species allow thermal stabilization of the char at high temperatures and provide good macro- and micro-structural properties. Both effects increase the mechanical strength of the protective layer during burning ensuring excellent heat and mass transfer limitations between gas and condensed phases.  相似文献   

8.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

9.
A novel flame retardant containing phosphorous-nitrogen structure, the ammonium salt of 2-hydroxyl-5,5-dimethyl-2,2-oxo-1,3,2-dioxapho sphorinane (PNOH), was synthesized and its structure was characterized by 1H NMR and FTIR spectra. PNOH was used together with ammonium polyphosphate (APP) to prepare a novel intumescent flame retardant (IFR) for polyvinyl alcohol (PVA). When a few amounts (0.5%) of metal chelates were added, the flame retardancy of the IFR-PVA systems was significantly improved, having a high LOI value of 34.2 in a total IFR loading of 15 wt.%. In order to have an understanding of the resulting flame retardant effects, the thermal degradation behaviors of IFR-PVA systems were investigated by thermogravimetric analysis (TGA), and the morphology and structures of residues generated in different conditions were investigated by scanning electronic microscopy (SEM) and FTIR spectra. The results show that NiSAO can promote the thermal stability of the IFR-PVA; the residual char containing polyphosphoric or phosphoric acid is formed during the combustion; the formation of a continuous and dense char layer could inhibit the transmission of heat during contacting with flame and shows good flame retardancy.  相似文献   

10.
Developing halogen‐free flame retardants with reasonably high efficiency, which thus function at limited loadings in polypropylene‐based wood/plastic composites (WPC), is still a challenge. Cost‐effective flame‐retarded WPC have been identified as a way to open the door to an interesting, broader spectrum of application in the building and transportation sectors. This work imparts a systematic comprehensive understanding and assessment of different basic routes to halogen‐free flame‐retarded WPC, taking into account economic and environmental considerations. Cheap, halogen‐free single‐component flame retardants and their multicomponent systems are investigated at reasonable filling grades of 20 wt%. The basic routes of promising synergistic multicomponent systems are discussed, and their potential and limits assessed. Optimizing the consistency of fire residue; closing the surface of inorganic‐organic residual layers; the thermal stabilization and design of the residue, eg, synergistic combination of ammonium polyphosphate and expandable graphite; and the combination of different flame‐retardant mechanisms, eg, intumescence and flame inhibition, are proposed as promising routes to boost the flame‐retardant efficiency.  相似文献   

11.
Piperazine cyanurate (PCA) is designed and synthesized via hydrogen‐bonding self‐assembly reactions between piperazine and cyanuric acid. Chemical structure and morphology of PCA are investigated by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The prepared PCA is combined with ammonium polyphosphate (APP) to prepare flame‐retardant polypropylene (PP) composites. Thermostability, flammability, and combustion characteristics of PP composites are analyzed. The maximum thermal decomposition rate of flame‐retarded PP composites has an apparent reduction compared with that of pure PP, and obvious char is left for this intumescent flame retardant (IFR) system of APP and PCA. A high limiting oxygen index value and UL‐94 V‐0 rating are achieved with addition of APP and PCA. In cone calorimetry test, heat and smoke releases of PP are significantly decreased by this IFR system. Gaseous decomposition products during the thermal decomposition of flame‐retardant composites are studied. Chemical structure and morphology of char residues are analyzed. The results illustrate that APP and PCA have a superb synergistic action in the aspect of improvement in fire safety of PP. A possible flame‐retardant mechanism is concluded to reveal the synergism between APP and PCA.  相似文献   

12.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Composites based on epoxy/graphene were investigated for thermal-mechanical performance. Initially, few-layer graphene oxide (GO) was modified with tetraethylenepentamine (GO-TEPA) in a reaction assisted by microwave radiation. GO and GO-TEPA samples were characterized for their structure and morphology. Composites containing 0.1, 0.3 and 0.5 wt.% of GO and GO-TEPA were prepared, and the effect of fillers on the morphology of cryofractured regions of epoxy matrix was observed through electron microscopy images. Dynamic mechanical thermal analysis (DMA) tests revealed increases of approximately 20 °C in glass transition. Moreover, when compared to neat polymer, composites containing 0.5 wt.% of GO-TEPA gained up to 103% in thermal conductivity (obtained by flash laser). Finally, nanoindentation analyses showed increases of 72% in Young's modulus and 143% in hardness for the same sample. The system is characterized as multifunctional nanocomposites because of the simultaneous gains in thermal and mechanical properties. The best results of the multifunctional composites were strongly associated with the chemical modification of the GO by TEPA.  相似文献   

14.
It is shown that, by the addition of a typical intumescent mixture of ammonium polyphosphate and pentaerythritol to polypropylene, the mechanism of intumescence which develops on heating is not significantly affected by dispersion of the intumescent mixture in the polymer. On the other hand, in these mixtures, polypropylene seems to evolve, by thermal degradation, a smaller amount of flammable products than when it is heated alone. The ammonium polyphosphate-pentaerythritol additive is shown to induce fire retardant characteristics in polypropylene by means of a ‘condensed phase’ mechanism.  相似文献   

15.
A phosphorus-containing flame retardant, 4-(5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinan-2-yloxymethyl)-2,6,7-trioxa-1-phospha-bicyclo[2.2.2]octane-1-oxide (MOPO), was synthesized successfully and characterized. The flame retardancy and thermal behavior of a new intumescent flame-retardant (IFR) system for EVA, which was made of MOPO and ammonium polyphosphate (APP), were investigated by limiting oxygen index (LOI) test, vertical burning test (UL-94), cone calorimeter, and thermogravimetric analysis (TGA). An LOI value of 28.4 and UL-94 V-0 rating can be achieved when the total loading of MOPO and APP was 30 wt.%. The results from cone calorimeter indicate that both the heat release rate (HRR) and the total heat release (THR) of IFR-EVA decreased significantly compared with those of neat EVA. TG curves showed that the amount of residues increased significantly when intumescent additives were added; it also could be found that the LOI values increased with the increase in char residues. Meanwhile, morphology of the residues obtained from burning IFR-EVA in LOI test was studied through the SEM observations and rich compact char layers could explain the excellent flame retardance.  相似文献   

16.
An inorganic azo diphosphonate (INAZO), (KO)2(O)P-NN-P(O)(OK)2·4H2O, was synthesized and tested as a novel type of flame retardant additive for castor oil and oligomeric methylene diphenyl diisocyanate (PMDI) based two component polyurethane adhesive with or without using dolomite ((CaMg(CO3)2) as filler. Flammability according to UL 94 test and performance under forced-flaming conditions (cone calorimeter) were investigated at the additive loadings of 5, 10 and 20 wt %. It was shown that INAZO improves flame retardancy by significantly reducing heat release rate (HRR), maximum average rate of heat emission (MARHE) and total smoke release (TSR) values in comparison to CaMg(CO3)2 filled polyurethane adhesives. The macroscopic structure of the sample residues after cone calorimeter measurement was also analysed. The action mechanism of the developed INAZO flame retardant is suggested to be mainly in the condensed phase. UL 94 V-0 rating was achieved in the vertical burning test when 10 wt % loading of INAZO was used, whereas the reference flame retardant ammonium polyphosphate (APP) required a loading of 20 wt % to reach the V-0 classification.  相似文献   

17.
The influence of microencapsulated ammonium polyphosphate (MFAPP) on flame retardancy, thermal properties and water resistance of epoxy (EP) composite were investigated by LOI, UL-94, DSC, TG, microscale combustion calorimeter (MCC) and TG-FTIR. The results of DSC show that the shell outside MFAPP can increase its compatibility in EP. EP/MFAPP containing only 9 wt% MFAPP can pass V-0 in the UL-94 test, while neat EP cannot pass any rating. Due to the presence of shell, water treatment show few effects on the flame retardancy of EP/MFAPP, while LIO values of EP/APP decrease remarkably after treatment. The presence of MFAPP can reduce the heat release rate and total heat release of EP significantly in MCC test. The reason is that MFAPP can stimulate the dehydration of EP at low temperature and retard the release of pyrolysis gas at high temperature. Moreover, a char formed via the reaction of EP and MFAPP has excellent thermal stability and can prevent underlying materials from further combustion during a fire.  相似文献   

18.
Polyethylene (PE) was modified by the addition of a layered double hydroxide of zinc aluminum oleate (ZnAl) and/or commercial fire retardants. Commercial additives included: melamine polyphosphate (MPP), ammonium polyphosphate (APP), triphenol phosphate (TPP), resorcinol diphosphate (RDP), decabromophenyl oxide (DECA) and antimony oxide (AO). The thermal stability and the combustion behaviors of the new composite polymeric materials are evaluated in TGA experiments and cone calorimetry. At 20% total additive loading, APP and LDH enhance the thermal stability of the PE composites and favor char formation. ZnAl leads to the best reduction in the peak of heat release rate (PHRR), 72%, while the combinations of PE with other additives give reductions in the range 20-40%. The combination of DECA and AO effectively increases the time to ignition and time to PHRR while LDH lowers these two parameters. APP and MPP on the other hand, do not affect the time to ignition, but they effectively increase the time to PHRR relative to the pristine polymer.  相似文献   

19.
Graphite (expanded graphite(EG), natural graphite (NG) and graphite oxide (GO)) flame retardant poly(ethylene-co-vinyl acetate) copolymer (EVA) composites (EVA/EG, EVA/NG and EVA/GO) have been prepared by melt compounding. The flammability, the combustion process, the quantity of the residual char, the morphology of the residual chars and the thermal stability of the chars were investigated by cone calorimeter, SEM and TGA. The results indicate that heat release rate (HRR), total heat released (THR) and total smoke release (TSR) of EVA/EG (EG 30 phr) composite decrease to about 21%, 42% and 28% of that of pure EVA, respectively. The orders of the three kinds of graphite on the reduction effect of THR and TSR are EG > NG > GO. The higher the quantity, the higher is the thermal stability of the char residue and the more compact and porous char structure may be the main reasons for the phenomenon above. It has been found that the flame retardance of EVA vulcanisates is improved and the fire jeopardizing is dramatically reduced due to the addition of the graphite, especially for EG, which can give some advice to design formulations for practical applications as the jackets of cables.  相似文献   

20.
Synergistic effect was observed between expandable graphite (EG) and ammonium polyphosphate (APP) on flame retarded polylactide (PLA) in this paper using limiting oxygen index (LOI), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and X-ray spectroscopy (XPS) and cone calorimeter tests etc. In the experiments, PLA composites with 15 wt% of APP/EG(1:3) combinations showed a LOI value of 36.5 and V-0 rating in UL-94 tests, greatly improved flame retardant properties from composites with APP or EG alone. Results from TGA and cone calorimeter demonstrated that APP/EG combination could retard the degradation of polymeric materials above the temperature of 520 °C by promoting the formation of a compact char layer. This char layer protects the matrix effectively from heat penetrating inside and prevents its further degradation, resulting in lower weight loss rate and better flame retarded performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号